Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)=y^2+8y-5y-45-\left(y^2-y+4y-4\right)\)
\(=y^2+3y-45-y^2+y-4y-4=-45-4=-49\)
Vậy GT của biểu thức ko phụ thuộc vào biến
\(b,y^4-\left(y^2-1\right)\left(y^2+1\right)=y^4-\left[\left(y^2\right)^2-1^2\right]=y^4-y^4+1=1\)
Vậy GT của biểu thức ko phụ thuộc vào biến
Bài làm :
\(x.\left(2x^3+x+2\right)-2x^2.\left(x^2+1\right)+x^2-2x+1\)
\(=2x^4+x^2+2x-2x^4-2x^2+x^2-2x+1\)
\(=\left(2x^4-2x^4\right)+\left(x^2-2x^2+x^2\right)+\left(2x-2x\right)+1\)
\(=1\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x .
Học tốt
a/. ĐKXĐ : (x-1)(x+1) # 0 => x # 1 hay x # -1
b/. \(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3.2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-4x-3}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{2\left(4-2x\right)}{5}\)
Em xem lại đè nhé. Đề như vậy thì sẽ ko rút gọn đc hết x trên tử. nên B vẫn phụ thuộc vào biến x.
chao cac bạn và a chi nếu đề sửa lai vây thi minh làm thế nào ( x+1/2x-2 + 3/x^2+1 - x+3/2x+1 )* (4x^2 -1)/5
\(A=\left(y-3\right)\left(y^2+3y+9\right)-\left(y^3+1\right).\)
\(A=\left(y^3-3^3\right)-\left(y^3+1\right)\)
\(A=y^3-27-y^3-1\)
\(A=-27-1\)
\(A=\left(-28\right)\)
a) P = 2 b) Q= -1