K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x 

1) A= (3x-5)(2x+11)-(2x+3)(3x+7)

A = 6x2 -10x +33x -55 - (6x2 +9x +14x +21)

A = 6x2 -10x +33x -55 - 6x2 - 9x - 14x - 21

A = -76

Vậy A không phụ thuộc vào biến x

2) tìm số nguyên a hay số thực bạn xem lại đầu bài nhé

3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017 

A = 4x2 -8x +2017  = (2x)2 -2.2x.2 +22 +2015 = (2x-2)2 +2015

Ta có (2x-2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0

vậy A = (2x-2)2 +2015  nhỏ nhất là bằng 2015 khi và chỉ khi 2x-2 = 0    <=>   x = 1

15 tháng 12 2017

mk thấy bài 1 phải là ko phụ thuộc vào biến x chứ

15 tháng 12 2017

bài 2 

a= -30

18 tháng 12 2017

A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x

= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x

= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)

= -10

Vậy A ko phụ thuộc vào giá trị của biến x

18 tháng 12 2017

a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10 

=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến

k mk nha

12 tháng 7 2018

\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)

\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)

\(\Rightarrow B=0\)

\(\Rightarrow B\)ko phụ thuộc vào g/t của biến 

\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)

\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)

\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)

\(\Rightarrow C=26\)

Vậy \(C\)ko phụ thuộc vào giá trị của biến 

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)

19 tháng 10 2018

https://olm.vn/hoi-dap/question/118420.html

Bạn có thể tham khảo cách làm ở link này nhé!