Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 t.h là ra mà bn : a âm - b dương
a dương -b âm ( loại vì thế k thỏa mãn bài )
minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểm
17x + 4 chia hết cho 7
=> 14x + 3x + 4 - 7 chia hết cho 7
=> 14x + 3x - 3 chia hết cho 7
=> 14x + 3(x - 1) chia hết cho 7
Mà 14x chia hết cho 7 => 3(x - 1) chia hết cho 7
Lại có (3;7)=1 => x - 1 chia hết cho 7
=> x = 7.k + 1(k thuộc N)
\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)
a. x2−113=31
=> x2=144
=> x2=\(\sqrt{144}\)
=> x=\(\pm12\)
c.x4=256
=> x4=44
=> x=\(\pm4\)
\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)
Chắc cậu giải được câu a) rồi nhỉ ?
Mình giải câu b) nha.
P(x)=-Q(x)\(\Rightarrow\)3x3+x2-3x+7=3x3+x2+x+15
-3x+7= x+15
-4x =8
x =-2
Vậy x=-2 để P(x)=-Q(x)
Chúc bạn học tốt.
Điều kiện: \(\left\{\begin{matrix}x+1\ge0\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\)
\(\Leftrightarrow A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\)
Để A nguyên trước hết ta tìm giá trị x để cho A2 là nguyên trước đã hay (x - 3) là ước của 4.
\(\Rightarrow\left(x-3\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-1,1,2,4,5,7\right)\)
\(\Rightarrow A^2=\left(5,6,8\right)\) (loại các giá trị x < 3)
Vậy không tồn tại giá trị x để A là số nguyên
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
khỏi cần nữa đâu