Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)
\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)
\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)
\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)
\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm
Ta có :
\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)
\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)
...........
\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)
Từ đó :
\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)
= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)
Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.
Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:
- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)
- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam
Chọn k nữ từ n nữ, có \(C_n^k\) cách
Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách
Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)
(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)
Giải:
Điều kiện là n\(\ge\)2, n\(\in\)Z
Ta có
(1) \(\Leftrightarrow\)\(\frac{\left(n+2\right)!}{\left(n-1\right)!3!}\)+\(\frac{\left(n+2\right)!}{n!2!}\)>\(\frac{5}{2}\)\(\frac{n!}{\left(n-2\right)!}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)\left(n+2\right)}{6}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)>\(\frac{5\left(n-1\right)n}{2}\)
\(\Leftrightarrow\)n(n2+3n+2) + 3(n2+3n+2) > 15(n2-n)
\(\Leftrightarrow\)n3-9n2+26n+6>0
\(\Leftrightarrow\)n(n2-9n+26)+6>0 (1)
Xét tam thứ bậc hai n2-9n+26, ta thấy \(\Delta\)=81-104<0
Vậy n2-9n+26>0 với mọi n. Từ đó suy ra với mọi n\(\ge\)2 thì (1) luôn luôn đúng. Tóm lại mọi số nguyên n\(\ge\)2 đều là nghiệm của (1).
chỗ nào không cứ hỏi mình nhé