K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2020

Với DK:a\(\ge\)b,b\(\ge\)0,a\(\ne\)b

\(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)=0\)

NV
22 tháng 6 2019

a/

\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)

b/

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

14 tháng 8 2019

a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)

b) Giống câu a ?

c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)

\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)

\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)

\(=\sqrt{ab}\)

3 tháng 9 2018

Áp dụng BĐT cô-si, ta được:

\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)

=>  \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)

=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)

Vậy....

26 tháng 11 2020

Biến đổi tương đương ta được :

\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)

\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )