\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\notin N\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)<2\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\notin N\)

\(\RightarrowĐPCM\)

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\left(1\right)\)

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}<\frac{2a}{b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

\(\Rightarrow1\)<A<2=>A\(\notin N\)

=>ĐPCM

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{b+c+a}+\frac{c+b}{c+a+b}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\notin N\)

\(\RightarrowĐPCM\)

12 tháng 5 2017

bài này tớ giải được nhung a,b,c,d\(\in\)N*

12 tháng 10 2017

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)(1)

Ta lại có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

=> \(a\left(a+b+c\right)< \left(a+c\right)\left(a+b\right)\)

<=> 0<bc( đúng)

CMTT: \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng lại ta được \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(2)

Từ (1) và (2) => Tổng đó \(\notin Z\)

15 tháng 10 2017

hjcftgjc

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

23 tháng 1 2017

Bài 1:

a) \(\frac{a}{5}=\frac{-3}{b}\)

\(\Rightarrow ab=-15\)

Ta có bảng sau:

a 1 -1 15 -15
b -15 15 -1 1

Vậy cặp số \(\left(a;b\right)\)\(\left(1;-15\right);\left(-1;15\right);\left(15;-1\right);\left(-15;1\right)\)

b) @Nguyễn Huy Thắng

Bài 2:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)

Vậy a = b = c

23 tháng 1 2017

nhân chéo xét Ư(21) quá dễ

27 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\)

\(ad< bc\)

\(2018ad< 2018bc\)

\(2018ad+cd< 2018bc+cd\)

\(\left(2018a+c\right)d< \left(2018b+d\right)c\)

\(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)

Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)

28 tháng 10 2016

Đặt P=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

CM P>1

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

CM: P<2

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)

Vì 1<P<2 => P ko fai STN