Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)
Tương tự: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế:
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\) ; \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)
Cộng vế với vế:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c=6\)
Dấu "=" xảy ra khi \(a=b=c=2\)
tau lam theo cach nay hoi dai nhung van dung
xet:a2/b2+c2-a/b+c=ab(a-b)+ac(a-c)/(b2+c2)(b+c)(1)
tg tu:b2/c2+a2-b/c+a=bc(b-c)+ab(b-a)/(a2+c2)(c+a)(2)
c2/a2+b2-c/a+b=ac(c-a)+cb(c-b)(3)
lay(1)+(2)+(3) roi dat thua so chung ab(a-b);ac(c-a);bc(b-c) ra roi gia su a=>b=>c>0 suy ra bieu thuc trong ngoac ko am =>dpcm
Ta có:
\(\frac{a^2}{b^2}+1\ge2.\frac{a}{b}\)
\(\frac{b^2}{c^2}+1\ge2.\frac{b}{c}\)
\(\frac{c^2}{a^2}+1\ge2.\frac{c}{a}\)
Cộng vế theo vế ta được
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-3\)
\(\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-3=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu = xảy ra khi a = b = c
Ta co: \(\frac{a^2}{b^2}\ge\frac{a}{b}\); \(\frac{b^2}{c^2}\ge\frac{b}{c}\);\(\frac{c^2}{a^2}\ge\frac{c}{a}\)\(\Rightarrow dpcm\)
bài 1. ta có
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng
Bài 2
ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)
Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)
\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)
Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad
\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0
\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0
\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)
Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)
=> đpcm tự kết luận
Với hai dãy số thực dương a1, a2, a3,..., an và b1, b2, b3,..., bn ta có:
\(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\).
Đẳng thức xảy ra \(\Leftrightarrow\frac{a_i}{b_i}=\frac{a_j}{b_j}\forall i,j\in\left[1;n\right]\)
Áp dụng BĐT Cô-si :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\left|\frac{a}{c}\right|\ge\frac{a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\left|\frac{b}{a}\right|\ge\frac{b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\left|\frac{c}{b}\right|\ge\frac{c}{b}\)
Cộng 3 vế của 3 đẳng thức trên với nhau có :
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Vậy ...
Ta có \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\)
\(\Leftrightarrow x^2+y^2\ge0\)
Áp dụng bài toán trên, ta có
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{ab}{bc}\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{a}{c}\) (1)
Chứng minh tương tự, ta được
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\) (2)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\) (3)
Cộng (1)(2)(3), ta được
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{a}{c}+2\frac{b}{a}+2\frac{c}{b}\)
\(\Leftrightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\) \(\left(đpcm\right)\)