Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
Xét hiệu
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-2\) = \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-2\cdot\frac{a}{b}\cdot\frac{b}{a}=\left(\frac{a}{b}-\frac{b}{a}\right)^2\) \(\ge0\)
=> \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-2\ge0\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge2\)
Dấu ' = ' xảy ra khi a = b
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Đặt \(P=a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\), ta được:
\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\)
Áp dụng bất đẳng thức Cô-si với bộ \(\left(a+b\right)^2\) và \(\left(\frac{1+ab}{a+b}\right)^2\), ta có:
\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\sqrt{\left(a+b\right)^2\left(\frac{1+ab}{a+b}\right)^2}-2ab=2\left(1+ab\right)-2ab=2\)
Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :
\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)
Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:
Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)
\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)
Thôi,đi vào giải quyết bài toán.
Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)
Khi đó BĐT tương đương với:
\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)
Ta cần chứng minh:
\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)
\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\)
Hình như cái BĐT cuối đúng thì phải ạ.
Dấu "=" xảy ra tại a=b=c=1
Tiếp câu b nha
\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)
\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)
Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)
\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)
\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)
\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)
\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)
Mà \(ƯC\left(3;5;8\right)=1\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
Vậy A chia hết cho 120
đặt a2+4 là x; b2+5 là y
ta có \(\frac{a^2+4}{b^2+5}+\frac{b^2+5}{a^2+4}\ge2\)
⇔ \(\frac{x}{y}+\frac{y}{x}\ge2\)
⇔ \(\frac{x^2+y^2}{xy}\ge2\)
⇔ x2 + y2 ≥ 2xy
⇔ x2 - 2xy + y2 ≥ 0
⇔ ( x - y )2 ≥ 0 (luôn luôn đúng )
vậy \(\frac{a^2+4}{b^2+5}+\frac{b^2+5}{a^2+4}\ge2\)