Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy vế trái trừ vế phải ta có:
\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\sqrt{2009}-\sqrt{2010}=\)\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\frac{2009}{\sqrt{2009}}-\frac{2010}{\sqrt{2010}}\)=\(\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\) (1)
2009<2010 lên biểu thức (1) >0
A=\(\frac{a^{2010}+2009+1}{\sqrt{a^{2010}+2009}}\)
=\(\sqrt{a^{2010}+2009}+\frac{1}{\sqrt{a^{2010}+2009}}\)
Áp dụng bdt cosi cho 2 số ko âm
ta đc: A >= @
dấu = xảy ra khi a^2010+2009=1
a^2010=-2008( vô lý)
=> dấu = ko xảy ra
vậy A>2
Từ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2010}\)
\(\Leftrightarrow\) \(\frac{x+y}{xy}=\frac{1}{2010}\)
\(\Leftrightarrow2010x-xy+2010y-2010^2=-2010^2\)
\(\Leftrightarrow x\left(2010-y\right)+2010\left(y-2010\right)=-2010^2\)
\(\Leftrightarrow\left(x-2010\right)\left(y-2010\right)=2010^2\)
Ta có \(\left(\sqrt{x-2010}+\sqrt{y-2010}\right)^2\)
\(=\left(x-2010\right)+\left(y-2010\right)+2\sqrt{\left(x-2010\right)\left(y-2010\right)}\)
\(=x+y-2.2010+2\sqrt{2010^2}=x+y\)
Do đó \(x+y=\left(\sqrt{x-2010}+\sqrt{y-2010}\right)^2\)
mà x, y > 0 nên \(\sqrt{x+y}=\sqrt{x-2010}+\sqrt{y-2010}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)
\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)
Câu a:
Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)
Áp dụng kết quả trên suy ra câu a
tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:
Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)
Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)
\(=\left(x+y+z\right)^3.\)(2)
TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
2)Ta có:
\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)
Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)
Áp dụng svac-xơ ta có:
\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)
đặt a^2010+2009=b
\(\Rightarrow\frac{b+1}{\sqrt{b}}\)
ta có : b+1\(\ge\)2\(\sqrt{b}\) ( cô - si)
\(\frac{b+1}{\sqrt{b}}\ge2\)
dấu = xảy ra \(\Leftrightarrow b=1\)
\(\Rightarrowđpcm\)