Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}=\frac{2013}{2014}\)
\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}>\frac{2013}{4030}\)
Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2014^2}\)
Đặt A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{2014.2015}\)
\(A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+.....\left(\frac{1}{2014}-\frac{1}{2015}\right)\\ =>A=\frac{1}{2}-\frac{1}{2015}\\ =>A=\frac{2013}{4030}\)
Mà S>A =>S>\(\frac{2013}{4030}\)
Bài 2)
Ta có \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)
\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)
\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
Thay B vào A ta được:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{1}{2015}\)
Vậy \(A=\frac{1}{2015}\)
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)
\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)
\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)
Câu hỏi của trần quốc tuấn - Toán lớp 7 - Học toán với OnlineMath