K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

y=2(m+1)x-m-1

=>y=(2m+2)x-m-1

=2mx+2x-m-1

=m(2x-1)+2x-1

Tọa độ điểm cố định mà d luôn đi qua là:

\(\left\{{}\begin{matrix}2x-1=0\\y=2x-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)

9 tháng 10 2021

Giả sử điểm cố định là\(A\left(x_0,y_0\right)\)

\(⇒y_0 =mx_0+1 ∀ m\)

\(⇔ − mx_0 + y_0 − 1 = 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua điểm cố định\(A\left(0,1\right)\)với mọi m

9 tháng 10 2021

cảm ơn

 

29 tháng 12 2023

a: Để (d) cắt (d1) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}m-2\ne2\\-2m+1=m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne4\\-3m=1\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{3}\)

b: Tọa độ giao điểm của d1 và d2 là:

\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}+2=\dfrac{5}{2}\end{matrix}\right.\)

Thay x=1/2 và y=5/2 vào (d), ta được:

\(\dfrac{1}{2}\left(m-2\right)+2+m=\dfrac{5}{2}\)

=>\(\dfrac{1}{2}m-1+m+2=\dfrac{5}{2}\)

=>\(\dfrac{3}{2}m=\dfrac{3}{2}\)

=>m=1

c: (d): y=(m-2)x+m+2

=mx-2x+m+2

=m(x+1)-2x+2

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x+1=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\cdot\left(-1\right)+2=4\end{matrix}\right.\)

13 tháng 11 2023

a:

Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)

Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:

\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)

=>-3=-3(đúng)

vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua

b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)

\(=2mx+x+m-2\)

\(=m\left(2x+1\right)+x-2\)

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)

NV
15 tháng 12 2020

Giả sử điểm cố định mà (d) luôn đi qua có tọa độ \(M\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m, ta luôn có:

\(y_0=\left(2m+1\right)x_0+m-2\)

\(\Leftrightarrow m\left(2x_0+1\right)+x_0-y_0-2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0-y_0-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy với mọi m thì (d) luôn đi qua điểm cố định có tọa độ \(\left(-\dfrac{1}{2};-\dfrac{5}{2}\right)\)

16 tháng 12 2022

y=(3m+1)x-2m+5

=3mx+x-2m+5

=m(3x-2)+x+5

Điểm mà (d) luôn đi qua có tọa độ là:

3x-2=0 và y=x+5

=>x=2/3 và y=5+2/3=17/3

1 tháng 8 2016

       (m-2).x + (m-1).y=1

<=>mx-2x+my-y         =1

<=>m(x+y)                  =2x+y+1(*)

Đẳng thức (*) luôn đúng với mọi m khi:

        x+y=0 và 2x+y+1=0

Bạn tự giải phần còn lại nhé.

Điểm đó là (-1;1)

1 tháng 8 2016

Là sao mình không hiểu

29 tháng 9 2022

???

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)