Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{12}{1\cdot4\cdot7}+\dfrac{12}{4\cdot7\cdot10}+\dfrac{12}{7\cdot10\cdot13}+...+\dfrac{12}{54\cdot57\cdot60}\)
\(P=\dfrac{12}{6}\left(\dfrac{1}{1\cdot4}-\dfrac{1}{4\cdot7}+\dfrac{1}{4\cdot7}-\dfrac{1}{7\cdot10}+...+\dfrac{1}{54\cdot57}-\dfrac{1}{57\cdot60}\right)\)
\(P=2\left(\dfrac{1}{1\cdot4}-\dfrac{1}{57\cdot60}\right)\)
\(P=\dfrac{2}{4}-\dfrac{2}{57\cdot60}=\dfrac{1}{2}-\dfrac{1}{57\cdot30}\)
\(\Rightarrow P< \dfrac{1}{2}\)
a) \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)
\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)
\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)
b) Chút nữa mình làm nhé ^^
b)
\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
Ta so sánh giữa A và Q.
\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)
\(\Rightarrow Q< A\)
Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)
Ta được:
\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)
Sửa đề: \(C=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\right)^6\cdot3^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(C=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}\)
\(=\dfrac{2}{3\cdot4}-\dfrac{5\cdot\left(-6\right)}{9}\)
\(=\dfrac{2}{12}+\dfrac{30}{9}=\dfrac{1}{6}+\dfrac{10}{3}=\dfrac{1}{6}+\dfrac{20}{6}=\dfrac{21}{6}=\dfrac{7}{2}\)
\(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...........+\dfrac{19}{9^2\cdot10^2}\\ =\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+................+\dfrac{19}{81\cdot100}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...............+\dfrac{1}{81}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}< 1\\ \RightarrowĐpcm\)
\(\dfrac{12}{1.4.7}+\dfrac{12}{4.7.10}+\dfrac{12}{7.10.13}+...+\dfrac{12}{54.57.60}\)
\(=2\left(\dfrac{1}{1.4}-\dfrac{1}{4.7}+\dfrac{1}{4.7}-\dfrac{1}{7.10}+\dfrac{1}{7.10}-\dfrac{1}{10.13}+...+\dfrac{1}{54.57}-\dfrac{1}{57.60}\right)\)\(=2\left(\dfrac{1}{1.4}-\dfrac{1}{57.60}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{57.60}\right)=\dfrac{1}{2}-\dfrac{1}{2.57.60}< \dfrac{1}{2}\left(đpcm\right)\)