\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)

\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{10}\)

\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)

\(\Leftrightarrow D< 1\left(đpcm\right)\)

19 tháng 7 2017

Các phần còn lại tương tự như a).

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

a) \(0,2\cdot\dfrac{15}{36}-\left(\dfrac{2}{5}+\dfrac{2}{3}\right):1\dfrac{1}{5}\)

\(=\dfrac{1}{12}-\dfrac{16}{15}\cdot\dfrac{5}{6}\)

\(=\dfrac{1}{12}-\dfrac{8}{9}\)

\(=\dfrac{-29}{36}\)

b) \(1\dfrac{13}{15}\cdot0,75-\left(\dfrac{8}{15}+0,25\right)\cdot\dfrac{24}{27}\)

\(=\dfrac{28}{15}\cdot0,75-\dfrac{47}{60}\cdot\dfrac{24}{27}\)

\(=\dfrac{7}{5}-\dfrac{94}{135}\)

\(=\dfrac{19}{27}\)

c) \(5:\left(4\dfrac{3}{4}-1\dfrac{25}{28}\right)-1\dfrac{3}{8}:\left(\dfrac{3}{8}+\dfrac{9}{20}\right)\)

\(=5\cdot\dfrac{7}{20}-\dfrac{11}{8}\cdot\dfrac{40}{33}\)

\(=\dfrac{7}{4}-\dfrac{5}{3}\)

\(=\dfrac{1}{12}\)

16 tháng 3 2018

a, Ta có :

\(\dfrac{1}{6}< \dfrac{1}{5}\)

\(\dfrac{1}{7}< \dfrac{1}{5}\)

.................

\(\dfrac{1}{9}< \dfrac{1}{5}\)

\(\dfrac{1}{10}=\dfrac{1}{10}\)

\(\dfrac{1}{11}< \dfrac{1}{10}\)

..................

\(\dfrac{1}{17}< \dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)

\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)

\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)

\(\Leftrightarrow A< 2\left(đpcm\right)\)

b/ Ta có :

\(\dfrac{1}{11}>\dfrac{1}{30}\)

\(\dfrac{1}{12}>\dfrac{1}{30}\)

...............

\(\dfrac{1}{29}>\dfrac{1}{30}\)

\(\dfrac{1}{30}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)

\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)

\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)

28 tháng 7 2017

1) \(\dfrac{2}{x+1}=\dfrac{x+1}{8}\Leftrightarrow\left(x+1\right)\left(x+1\right)=2.8\Leftrightarrow\left(x+1\right)^2=16\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\) vậy \(x=3;x=-5\)

2) thiếu quế phải nha

3) \(\dfrac{x-4}{x-7}=\left(\dfrac{-3}{5}\right)^2\Leftrightarrow\dfrac{x-4}{x-7}=\dfrac{9}{25}\Leftrightarrow9.\left(x-7\right)=25.\left(x-4\right)\)

\(\Leftrightarrow9x-63=25x-100\Leftrightarrow25x-9x=-63+100\)

\(\Leftrightarrow16x=37\Leftrightarrow x=\dfrac{37}{16}\) vậy \(x=\dfrac{37}{16}\)

4) ta có : \(x+y=20\Leftrightarrow y=20-x\)

\(\dfrac{3+x}{7+y}=\dfrac{3}{7}\Leftrightarrow7\left(3+x\right)=3\left(7+y\right)\Leftrightarrow21+7x=21+3y\)

\(\Leftrightarrow7x=3y\Leftrightarrow7x-3y=0\Leftrightarrow7x-3\left(20-x\right)=0\)

\(\Leftrightarrow7x-60+3x=0\Leftrightarrow10x=60\Leftrightarrow x=6\)

\(\Rightarrow6+y=20\Leftrightarrow y=14\) vậy \(x=6;y=14\)

28 tháng 7 2017

\(\dfrac{23+x}{40-x}=\dfrac{-3}{4}\Leftrightarrow4\left(23+x\right)=-3\left(40-x\right)\)

\(\Leftrightarrow92+4x=-120+3x\Leftrightarrow4x-3x=-120-92\)

\(\Leftrightarrow x=-212\) vậy \(x=-212\)

8 tháng 5 2018

Ta có:

\(\dfrac{1}{2}+\dfrac{1}{3}< \dfrac{1}{2}+\dfrac{1}{2}\)

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< \dfrac{1}{4}\cdot4\)

\(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}< \dfrac{1}{8}\cdot8\)

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{15}< \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{4}\cdot4+\dfrac{1}{8}\cdot8\)

\(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}< \dfrac{1}{16}\cdot16\)

\(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}< \dfrac{1}{32}\cdot32\)

\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}< 1+\dfrac{1}{2}\cdot2+\dfrac{1}{4}\cdot4+\dfrac{1}{8}\cdot8+\dfrac{1}{16}\cdot16+\dfrac{1}{32}\cdot32\)\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}< 1+1+1+1+1+1\)

\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}< 6\)