Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E M N F H
Vì tam giác ABC cân tại A nên \(\Delta AHB=\Delta AHC\left(g-c-g\right)\Rightarrow HE=HF;AE=AF\)
a.Xét tam giác AEH và tam giác AFH có \(\hept{\begin{cases}HE=HF;AE=AF\left(cmt\right)\\\widehat{E}=\widehat{F}=90^0\end{cases}\Rightarrow\Delta AEH=\Delta AFH}\left(c-g-c\right)\)
b. Có \(AE=AF\Rightarrow\Delta AEF\)cân tại A
Mà \(EF\)song song với BC \(\Rightarrow AH⊥EF\)
Ta có tam giác AEF cân tại A nên có AH vừa là đường cao vừa là đường trung trực
c. Ta có \(HE=HF\)mà \(\hept{\begin{cases}EH=EM\\FH=FN\end{cases}}\)\(\Rightarrow EM=FN\)
Xét tam giác AEM và tam giác AFN có \(\hept{\begin{cases}AE=AF\\\widehat{E}=\widehat{F}=90^0\\EM=FN\end{cases}}\Rightarrow\Delta AEM=\Delta AFN\left(c-g-c\right)\)
\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
Suy ra: góc AFE=góc AHE=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>góc MAC=góc ACB
=>góc MAC+góc EFA=90 độ
=>AM vuông góc với EF
c: Xét ΔADI có
H,M lần lượt là trung điểm của AI và AD
nên HM là đường trung bình
=>HM//DI
=>DI//BC
Xét ΔCIA có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCIA cân tại C
=>CI=CA=DB
=>BIDC là hình thang cân
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC