Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
Ta có:\(P-5⋮8\)
\(\Rightarrow P\) có dạng 8k+5(\(k\in N\))
Ta có:\(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮ax^2-by^2⋮p\)(1)
Mặc khác:\(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}=x^{8k+4}\left(a^{4k+2}+b^{4k+2}\right)-b^{4k+2}\left(x^{8k+4}+y^{8k+4}\right)\)
Lại có:\(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮a^2+b^2=P\)
Từ (1) \(\Rightarrow b^{4k+2}\left(x^{8k+4}+y^{8k+4}\right)⋮p\)
Mà p là snt và b<p\(\Rightarrow x^{8k+4}+y^{8k+4}⋮p\)(2)
Giả sử \(x⋮p\Rightarrow y⋮p\)
Giả sử x không chia hết cho p
Thì theo định lí fecma ta có:
\(x^{8k+4}=x^{p-1}\equiv1\)(mod p);\(y^{8k+4}\equiv1\)(mod p)
\(\Rightarrow x^{8k+4}+y^{8k+4}\equiv2\)(mod p) mà p>2=>mâu thuẫn với (2)
=>đpcm