\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

9 tháng 4 2017

Tạm thời chưa  hiểu gì cả

hãy đợi đó

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

4 tháng 10 2018

a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)

b) \(tan^2x+cot^2x+2\)

\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)

\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)

\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)

\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)

c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)

\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)

\(=1+sin^2x.cos^2x\)

Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^

1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)

\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)

\(=1\)

2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{1}{sin^2x-cos^2x}\)

\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)

\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)

=>VT=VP

12 tháng 11 2020

Xét tam giác ABC vuông tại A có AH là đường cao và AM là trung tuyến

Đặt \(\widehat{MAC}=\widehat{MCA}=x\)thì \(\widehat{BMA}=2x\)(theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông)

a) Ta có: \(\sin2x=\frac{AH}{AM}=2.\frac{AH}{BC}=2.\frac{AH}{AC}.\frac{AC}{BC}=2.\sin ACH.\cos ACB=2\cos x.\sin x\)

b) \(\cos2x=\frac{HM}{AM}=\frac{2HM}{BC}=\frac{2HC-2CM}{BC}=2.\frac{HC}{BC}-1=2.\frac{HC}{ AC}.\frac{AC}{BC}-1=2.\cos ACH.\cos ACB-1=2\cos^2x-1=2\cos^2x-\left(\sin^2x+\cos^2x\right)=\cos^2x-\sin^2x\)c) \(\tan2x=\frac{\sin2x}{\cos2x}=\frac{2\cos x.\sin x}{\cos^2x-\sin^2x}=\frac{2.\frac{\sin x}{\cos x}}{\frac{\cos^2x}{\cos^2x}-\frac{\sin^2x}{\cos^2x}}=\frac{2\tan x}{1-\tan^2x}\)

17 tháng 2 2022

\(\frac{2cos^2x-\left(cos^2x+sin^2x\right)}{cosx+sinx}=\frac{cos^2x-sin^2x}{cosx+sinx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)}\)

\(=cosx-sinx\)

2 tháng 5 2020

\(VT=\frac{2\cos^2x-1}{\cos x+\sin x}=\frac{2\cos^2x-\cos^2x-\sin^2x}{\cos x+\sin x}\)\(=\frac{\cos^2x-\sin^2x}{\cos x+\sin x}=\frac{\left(\cos x+\sin x\right)\left(\cos x-\sin x\right)}{\cos x+\sin x}\)

\(=\cos x-\sin x=VP\)

=> đpcm

2 tháng 8 2018

a+b+c : dựa vào cái hệ thức \(\sin^2\alpha+\cos^2\alpha=1\)

a) Ta có :  \(\left(\sin x+\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x\)

\(=1+2.\sin x.\cos x\left(đpcm\right)\)

b) Ta có :  \(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x+\sin^2x-2.\sin x.\cos x+\cos^2x\)

\(=\sin^2x+\cos^2x+\sin^2x+\cos^2x\)

\(=2\left(\sin^2x+\cos^2x\right)\)

\(=2\times1=2\left(đpcm\right)\)

c) Ta có :  \(\sin^4x+\cos^4x\)

\(=\left(\sin^2x\right)^2+\left(\cos^2x\right)^2\)

\(=\left(\sin^2x+\cos^2x\right)^2-2.\sin^2x.\cos^2x\)

\(=1-2.\sin^2x.\cos^2x\left(đpcm\right)\)

Vậy ...