K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(VT=\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3\)

\(=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(=VP\left(đpcm\right)\)

\(\left(x+y+z\right)^3=x^3+y^3+z^3+3x^2y+3xy^2+3y^2z+3z^2x+3x^2z+3z^2x+6xyz\)

=\(x^3+y^3+z^3+3\left(x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz\right)\)

=\(x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)(đpcm)

18 tháng 11 2018

a)Đặt A=(x+y+z)3-x3-y3-z3
Xét (x+y+z)3=[(x+y)+z]3=(x+y)3+z3+3z(x+y)(x+y+z) =x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)
=(x3+y3+z3)+3(x+y)(xy+xz+yz+z2)
=(x3+y3+z3)+3(x+y)[(xy+yz)+(xz+z2)]
=(x3+y3+z3)+3(x+y)[y(x+z)+z(x+z)]
=(x3+y3+z3)+3(x+y)(x+z)(y+z)
Từ đó suy ra A=(x3+y3+z3)+3(x+y)(x+z)(y+z)-x3-y3-z3=3(x+y)(x+z)(y+z)

20 tháng 6 2015

x^3 + y^3 + z^3 +3(x+y)(y+z)(z+x)=x3+y3+z3+(3x+3y)(y+z)(z+x)

=x3+y3+z3+(3xy+3xz+3y2+3yz)(z+x)

=x3+y3+z3+3xyz+3x2y+3xz2+3x2z+3y2z+3y2x+3yz2+3xyz

=x3+y3+z3+3x2y+3xz2+3x2z+3y2z+3y2x+3yz2+6xyz

=x3+3x2y+3y2x+y3+3x2z+6xyz+3y2z+3xz2+3yz2+z3

=(x+y)3+3z(x2+2xy+y2)+3z2(x+y)+z3

=(x+y)3+3z(x+y)2+3z2(x+y)+z3

=(x+y+z)3

vậy (x+y+z)^3= x^3 + y^3 + z^3 +3(x+y)(y+z)(z+x)

21 tháng 11 2018

Đề có đúng ko vậy (x+y+c)3 ???

22 tháng 11 2018

xin hỗi viết thiếu chỗ kia là -x3 -y3 -z3=....

29 tháng 12 2017

a, \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)(vì x+y=-z)

30 tháng 12 2017

Cảm ơn ạ

22 tháng 11 2022

Bài 3:

\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z

NV
24 tháng 8 2020

\(x+y+z=0\Rightarrow z=-\left(x+y\right)\)

\(x^3+x^2z+y^2z-xyz+y^3=x^3+y^3+\left(x^2+y^2-xy\right)z\)

\(=x^3+y^3-\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(=x^3+y^3-\left(x^3+y^3\right)=0\)

9 tháng 7 2023

x+y+z=0⇒z=−(x+y)�+�+�=0⇒�=−(�+�)

x3+x2z+y2z−xyz+y3=x3+y3+(x2+y2−xy)z�3+�2�+�2�−���+�3=�3+�3+(�2+�2−��)�

=x3+y3−(x+y)(x2+y2−xy)=�3+�3−(�+�)(�2+�2−��)

=x3+y3−(x3+y3)=0

Đặt A=(x+y+z)3-x3-y3-z3

Xét (x+y+z)3=[(x+y)+z]3=(x+y)3+z3+3z(x+y)(x+y+z)=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)

                                                                                      =(x3+y3+z3)+3(x+y)(xy+xz+yz+z2)

                                                                                       =(x3+y3+z3)+3(x+y)[(xy+yz)+(xz+z2)]

                                                                                        =(x3+y3+z3)+3(x+y)[y(x+z)+z(x+z)]

                                                                                         =(x3+y3+z3)+3(x+y)(x+z)(y+z)

Từ đó suy ra A=(x3+y3+z3)+3(x+y)(x+z)(y+z)-x3-y3-z3=3(x+y)(x+z)(y+z

3 tháng 10 2017

 thank you very much !