Chứng minh đẳng thức: u − uv...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2021

a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)

Thay t = -1 và s = 1 vào biểu thức trên ta được :

\(1+1+1+1=4\)

b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)

\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)

Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)

\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)

\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)

\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)

24 tháng 6 2018

a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)

\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)

NV
11 tháng 4 2020

Câu 2:

Ta có:

\(P\left(x\right)=x^{100}+x^2+1\)

\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)

\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)

\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)

\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)

\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)

NV
11 tháng 4 2020

Câu 1:

Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)

Do \(P\left(x\right)\) chia hết \(x-1\)\(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)

Do \(P\left(x\right)\) chia \(x^2-x+1\)\(2x-3\)

\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)

Thay \(x=1\) ta được:

\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)

\(\Leftrightarrow a+b=1\)

Thay \(x=2\) ta được:

\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)

\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)

\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)

Bạn có thể nhân phá ra và rút gọn

27 tháng 7 2017

\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3+27-8x^3+2=29\)

Vậy biểu thức sau không phụ thuộc vào x

21 tháng 3 2020

1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)

<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)

<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)

Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)

Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)

=\(\frac{5}{a+1}\)

Tương tự với x:y

21 tháng 3 2020

\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)

13 tháng 4 2017

2) \(x^4-x^2+1=0\)(1)

Đặt: t=x2, khi đó:

(1)\(\Leftrightarrow t^2-t+1=0\)

\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)

\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm

10 tháng 8 2017

1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2

- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)

- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)

Như vậy \(A⋮3\)

Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)

Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)

Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)

Hay \(A⋮16\)

Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)

2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

- Chứng minh \(B⋮16\) tương tự như ở câu 1

- Ta sẽ đi chứng minh \(B⋮5\)

+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)

Do đó \(B⋮5\)

Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)

10 tháng 8 2017

4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)

- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)

- Chứng minh \(D⋮5\)

+ Nếu \(n⋮5\) thì \(D⋮5\)

+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)

- Chứng minh \(D⋮16\)

+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)

+ Nếu n lẻ, cmtt câu 1

Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)

3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)

- Chứng minh \(C⋮8\)

+ Nếu n chẵn thì \(n^2⋮4\)\(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)

+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)

- Chứng minh \(C⋮9\)

+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)

+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)

Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)

Hay \(C⋮9\)

Ta có \(C⋮8\)\(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)