Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai rồi thê này nè
a/ \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Ta co: \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
b/ \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta co: \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\)
Giải:
a) Biến đổi VP, ta có:
\(\dfrac{1}{a}-\dfrac{1}{a+1}\)
\(=\dfrac{1.\left(a+1\right)}{a.\left(a+1\right)}-\dfrac{a.1}{a.\left(a+1\right)}\)
\(=\dfrac{a+1}{a.\left(a+1\right)}-\dfrac{a}{a.\left(a+1\right)}\)
\(=\dfrac{a+1-a}{a.\left(a+1\right)}\)
\(=\dfrac{1}{a.\left(a+1\right)}\) (đpcm)
b) Biến đổi VP, ta được:
\(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)
\(=\dfrac{1\left(a+2\right)}{a\left(a+1\right)\left(a+2\right)}-\dfrac{1.a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\dfrac{a+2}{a\left(a+1\right)\left(a+2\right)}-\dfrac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\dfrac{a+2-a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\dfrac{2}{a\left(a+1\right)\left(a+2\right)}\) (đpcm)
Chúc bạn học tốt!!!
Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)
\(=\left(-1\right)^n\cdot a^n\cdot a^k\)
\(=\left(-1\cdot a\right)^n\cdot a^k\)
\(=\left(-a\right)^n\cdot a^k\)(đpcm)