\(\left(-1\right)^n.a^{n+k}=\left(-a\right)^n.a^k\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)

\(=\left(-1\right)^n\cdot a^n\cdot a^k\)

\(=\left(-1\cdot a\right)^n\cdot a^k\)

\(=\left(-a\right)^n\cdot a^k\)(đpcm)

18 tháng 3 2020

\(\left[-a^5.\left(-a\right)^5\right]^2+\left[-a^2.\left(-a\right)^2\right]^5=0\)

\(\Leftrightarrow\left(a^{10}\right)^2+\left(a^4\right)^5=0\)

\(\Leftrightarrow a^{20}+a^{20}=0\)

\(\Leftrightarrow2a^{20}=0\)

\(\Leftrightarrow a=0\)

Vậy a = 0

25 tháng 9 2018

Sai rồi thê này nè

a/ \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)

Ta co: \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)

b/ \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

Ta co: \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\)

31 tháng 8 2017

Giải:

a) Biến đổi VP, ta có:

\(\dfrac{1}{a}-\dfrac{1}{a+1}\)

\(=\dfrac{1.\left(a+1\right)}{a.\left(a+1\right)}-\dfrac{a.1}{a.\left(a+1\right)}\)

\(=\dfrac{a+1}{a.\left(a+1\right)}-\dfrac{a}{a.\left(a+1\right)}\)

\(=\dfrac{a+1-a}{a.\left(a+1\right)}\)

\(=\dfrac{1}{a.\left(a+1\right)}\) (đpcm)

b) Biến đổi VP, ta được:

\(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{1\left(a+2\right)}{a\left(a+1\right)\left(a+2\right)}-\dfrac{1.a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{a+2}{a\left(a+1\right)\left(a+2\right)}-\dfrac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{a+2-a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{2}{a\left(a+1\right)\left(a+2\right)}\) (đpcm)

Chúc bạn học tốt!!!

2 tháng 9 2016

Sai đề nha bạn

15 tháng 6 2017

a, f(10x) = k.(10x) = 10.(kx) = 10.f(x)

b, f(x1 + x2) = k(x1 + x2) = kx1 + kx2 = f(x1) + f(x2)

c, f(x1 - x2) = k(x1 - x2) = kx1 - kx2 = f(x1) - f(x2)