K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

\(a)\)\(VP=x^3+3x^2+2x\)

\(VP=x\left(x^2+3x+2\right)\)

\(VP=x\left[\left(x^2+x\right)+\left(2x+2\right)\right]\)

\(VP=x\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(VP=x\left(x+1\right)\left(x+2\right)\) ( đpcm ) 

Chúc bạn học tốt ~ 

27 tháng 9 2018

a) x(x+1)(x+2)=(x2+x)(x+2)=x3+2x2+x2+2x=x3+3x2+3x

b)

(3x - 2)(4x - 5) - (2x - 1)(6x + 1) = 0

12x2 - 15x - 8x + 10 - 12x2 - 2x + 6x + 1 = 0

- 19x = - 11

x = 11/19

27 tháng 9 2018

a, Biến đổi vế trái :

\(VT=x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)=x^3+3x^2+2x\) 2x

b,\(\left(3x-2\right)\left(4x-5\right)-\left(2x-1\right)\left(6x+2\right)=0\)

\(\Leftrightarrow12x^2-15x-8x+10-\left(12x^2+4x-6x-2\right)=0\)

\(\Leftrightarrow12x^2-23x+10-12x^2+2x+2=0\)

\(\Leftrightarrow12-21x=0\)

\(\Leftrightarrow-21x=-12\)

\(\Leftrightarrow21x=12\)

\(\Leftrightarrow x=\frac{4}{7}\)

c,

27 tháng 9 2018

a, bạn thêm

Vậy VT=VT(đpcm)

nhé

Bài 2. Thực hiện phép nhân: a. 3x(4x - 3) - (2x -1)(6x + 5) b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1) c. (x - 2)(1x + 2)(x + 4) Bài 3. Chứng ming rằng: a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2 c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3 e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4 Bài 4. Tìm x biết: a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12 c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 ...
Đọc tiếp

Bài 2. Thực hiện phép nhân:

a. 3x(4x - 3) - (2x -1)(6x + 5)

b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1)

c. (x - 2)(1x + 2)(x + 4)

Bài 3. Chứng ming rằng:

a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2

c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3

e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4

Bài 4. Tìm x biết:

a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12

c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 d. 4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)

e. 2(3x -1)(2x + 5) - 6(2x -1)(x + 2) = -6

Bài 5. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:

a. A = 2x(x -1) - x(2x + 1) - (3 - 3x) b. B = 2x(x - 3) - (2x - 2)(x - 2)

c. C = (3x - 5)(2x +11) - (2x + 3)(3x + 7) d. D = (2x +11)(3x - 5) - (2x + 3)(3x + 7)

Bài 6. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào y:

P = (2x - y)(4x2 + 2xy + y2 ) + y3

các bạn ơi giúp mình nha

3
8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

18 tháng 6 2016

f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)

\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)

\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)

\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)

\(-x^3=27\)

\(x=-3\)

18 tháng 6 2016

Bài 1:

a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(6x-9+4-2x=-3\)

\(4x=-2\)

\(x=-\frac{1}{2}\)

b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)

\(2x^3-4x+x^2-2x^3-x^2=-12\)

\(-4x=-12\)

\(x=\frac{1}{3}\)

16 tháng 8 2018

Bài 1:

  a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10

b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61

Bài 2:

a)(2x-1)^2-(x+3)^2 = 0

   <=> (2x-1-x-3).(2x-1+x+3) =0

   <=>(x-4).(3x+2) = 0

<=> x-4 = 0 hoặc 3x+2=0 

              *x-4=0    =>   x=4

              *3x+2 = 0     => 3x=-2   => x=-2/3

b)x^2(x-3)+12-4x=0       <=>     x^2(x-3) - 4(x-3) =0     <=>       (x-3).(x-2)(x+2)   <=> x-3=0 hoặc x-2=0  hoặc x+2 =0

                                                                                        *x-3=0  => x=3

                                                                                        *x-2=0    =>x=2

                                                                                        *x+2=0   =>x=-2

c)  6x^3 -24x =0  <=> 6x(x^2 -4)=0    <=> 6x(x-2)(x+2)=0    <=>  x=0 hoặc x-2 =0 hoặc x+2=0  <=> x=0 hoặc x=2  hoặc x=-2

16 tháng 5 2019

chú m lộn cak

mnjnnn 
  
  
19 tháng 8 2020

làm ơn giúp mình với

19 tháng 8 2020

A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) (  3x + 7 )

=> A = 6x2 + 23x - 55 - 6x- 23x - 21

=> A = - 55 - 21

=> A = - 76 ( không phụ thuộc vào biến x )

B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )

=> B = 8x3 + 27 - 8x3 + 2

=> B = 27 + 2

=> B = 29 ( không phụ thuộc vào biến x )

C = ( x - 1 )3 - (  x + 1 )3 + 6 ( x + 1 ) ( x - 1 )

=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

=> C = - 6x2 - 2 + 6x2 - 6

=> C = - 2 - 6

=> C = - 8 ( không phụ thuộc vào biến x )

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x

24 tháng 7 2019

\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)

\(=\left(a+c+b\right)\left(a+c-b\right)\)

\(=\left(a+c\right)^2-b^2\)

\(=a^2+2ac+c^2-b^2=VP\)

\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)

\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)

\(c,VT=x^3-1-x^3-1=-2=VP\)

\(d,VT=8x^3+1-8x^3+1=2=VP\)

\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)

\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)

\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)

( bn kiểm tra lại đề nhé)