Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: điều kiện xác định của phương trình 5x+14x−2+x−31+x=0 là:
A. x ≠12
B. x ≠-1 và x ≠12
C. x ≠-1 và x≠−12
D. x ≠-1
C2: bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?
A. 2x2 +1<0
B. 0.x +4>0
C. x+33x+2016>0
D. 11x−1<0
C3: với x < y ta có:
A. x-5 >y -5
B. 5-2x <5-2y
C. 5-x<5-y
D. 2x-5<2y -5
C4: khi x<0 kết quả rút gọn của biểu thức |−2x|−x+5 là:
A. -3x+5
B. x+5
C. -x+5
D. 3x+5
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{y}{x}+\frac{x}{y}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x^2-xy+y^2\right)\left(x^2-2xy+y^2\right)}{x^2y^2}\ge0\)
\(\Leftrightarrow\frac{\left[\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]\left(x-y\right)^2}{x^2y^2}\ge0\) ( đúng )
Vậy đẳng thức đã được chứng minh .
Dấu \("="\) xảy ra khi \(x=y\)
DƯƠNG PHAN KHÁNH DƯƠNG: Dùng AM-GM cũng được mà
Áp dụng BĐT AM-GM ta có:\(\left\{{}\begin{matrix}\frac{x^2}{y^2}+1\ge2.\frac{x}{y}\\\frac{y^2}{x^2}+1\ge2.\frac{y}{x}\\\frac{x}{y}+\frac{y}{x}\ge2\end{matrix}\right.\)
Dấu " = " xảy ra <=> x=y
\(\Rightarrow\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1+2\ge2\left(\frac{x}{y}+\frac{y}{x}\right)+2\)
Có: \(2\left(\frac{x}{y}+\frac{y}{x}\right)+2-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+2\ge2.\left(-1\right)+2=0\)\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Dấu " = " xảy ra <=> x=y
\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\)
\(P=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(P=\frac{x^2-\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(P=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(P=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(P=\frac{5\left(2x-5\right).x\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)\left(2x-5\right)}+\frac{x}{5-x}\)
\(P=\frac{5}{x-5}+\frac{x}{5-x}\)
\(P=\frac{5}{x-5}-\frac{x}{x-5}\)
\(P=\frac{5-x}{x-5}\)
\(P=\frac{-\left(x-5\right)}{x-5}\)
\(P=-1\)
=> Giá trị của biểu thức P không phụ thuộc vào biến
đpcm
\(B=\frac{x^2}{5x+25}+\frac{2\left(x-5\right)}{x}+\frac{50+5x}{x^2+5x}\)
\(=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(10+x\right)}{x\left(x+5\right)}\)
\(=\frac{x^3+10x^2-250+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)
\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
Thay x=-2 vào phân thức ta có
\(\frac{-2+5}{5}=\frac{3}{5}\)