K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

C1: điều kiện xác định của phương trình 5x+14x−2+x−31+x=0 là:

A. x 12

B. x -1 và x 12

C. x -1 và x≠−12

D. x -1

C2: bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?

A. 2x2 +1<0

B. 0.x +4>0

C. x+33x+2016>0

D. 11x1<0

C3: với x < y ta có:

A. x-5 >y -5

B. 5-2x <5-2y

C. 5-x<5-y

D. 2x-5<2y -5

C4: khi x<0 kết quả rút gọn của biểu thức |−2x|−x+5 là:

A. -3x+5

B. x+5

C. -x+5

D. 3x+5

14 tháng 3 2019

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{y}{x}+\frac{x}{y}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x^2-xy+y^2\right)\left(x^2-2xy+y^2\right)}{x^2y^2}\ge0\)

\(\Leftrightarrow\frac{\left[\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]\left(x-y\right)^2}{x^2y^2}\ge0\) ( đúng )

Vậy đẳng thức đã được chứng minh .

Dấu \("="\) xảy ra khi \(x=y\)

14 tháng 3 2019

DƯƠNG PHAN KHÁNH DƯƠNG: Dùng AM-GM cũng được mà

Áp dụng BĐT AM-GM ta có:\(\left\{{}\begin{matrix}\frac{x^2}{y^2}+1\ge2.\frac{x}{y}\\\frac{y^2}{x^2}+1\ge2.\frac{y}{x}\\\frac{x}{y}+\frac{y}{x}\ge2\end{matrix}\right.\)

Dấu " = " xảy ra <=> x=y

\(\Rightarrow\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1+2\ge2\left(\frac{x}{y}+\frac{y}{x}\right)+2\)

Có: \(2\left(\frac{x}{y}+\frac{y}{x}\right)+2-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+2\ge2.\left(-1\right)+2=0\)\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

Dấu " = " xảy ra <=> x=y

19 tháng 12 2018

\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\)

\(P=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x}{5-x}\)

\(P=\frac{x^2-\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)

\(P=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)

\(P=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)

\(P=\frac{5\left(2x-5\right).x\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)\left(2x-5\right)}+\frac{x}{5-x}\)

\(P=\frac{5}{x-5}+\frac{x}{5-x}\)

\(P=\frac{5}{x-5}-\frac{x}{x-5}\)

\(P=\frac{5-x}{x-5}\)

\(P=\frac{-\left(x-5\right)}{x-5}\)

\(P=-1\)

=> Giá trị của biểu thức P không phụ thuộc vào biến

                                                   đpcm

2 tháng 2 2018

Dề sai ko bạn

2 tháng 2 2018

Chỉ cần ý b thôi 

11 tháng 1 2017

\(\frac{-2}{\left(x+5\right)\left(x-5\right)}\)

6 tháng 12 2019

\(B=\frac{x^2}{5x+25}+\frac{2\left(x-5\right)}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(10+x\right)}{x\left(x+5\right)}\)

\(=\frac{x^3+10x^2-250+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)

\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)

\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

Thay x=-2 vào phân thức ta có

\(\frac{-2+5}{5}=\frac{3}{5}\)

17 tháng 3 2019

\(\frac{1}{3}x^3\) nha mik vt nhầm