Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{2}{4}\)
\(=\dfrac{3}{4}\)
b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)
\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)
\(=\dfrac{1}{2}+\dfrac{4}{5}\)
\(=\dfrac{5}{10}+\dfrac{8}{10}\)
\(=\dfrac{9}{5}\)
c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)
\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)
\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)
\(=\dfrac{7}{3}+\dfrac{28}{3}\)
\(=\dfrac{35}{3}\)
d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)
\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)
\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)
\(=\dfrac{1}{6}-\dfrac{7}{2}\)
\(=\dfrac{1}{6}-\dfrac{21}{6}\)
\(=\dfrac{-10}{3}\)
e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)
\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\dfrac{2}{3}\)
f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{3}{2}\)
\(=\dfrac{2}{2}=1\)
g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)
\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{2}{4}-\dfrac{3}{4}\)
\(=\dfrac{-1}{4}\)
h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)
\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{9}{28}\)
\(=\dfrac{196}{140}-\dfrac{45}{140}\)
\(=\dfrac{151}{140}\)
i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)
\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)
\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)
\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)
k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)
\(=-\dfrac{2}{3}\)
\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)
\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)
\(A=\dfrac{1}{8}.1.20\)
\(A=\dfrac{20}{8}=\dfrac{5}{2}\)
\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)
\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)
\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)
\(B=\left(16+1\right)+4,03\)
\(B=17+4,03\)
\(B=21,03\)
\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)
\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)
\(C=390.\dfrac{15}{78}\)
\(C=75\)
a) \(5\dfrac{3}{8}-1\dfrac{9}{10}=\dfrac{43}{8}-\dfrac{19}{10}=\dfrac{215}{40}-\dfrac{76}{40}=\dfrac{139}{40}\)
b) \(\left(-3\dfrac{1}{4}\right)+\left(-2\dfrac{1}{3}\right)=-\dfrac{13}{4}+\left(-\dfrac{7}{3}\right)=-\dfrac{39}{12}+\left(-\dfrac{28}{12}\right)=\dfrac{-67}{12}\)
c) \(\left(-5\dfrac{1}{8}\right)+3\dfrac{2}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{14}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{28}{8}=-\dfrac{13}{8}\)
d)\(\left(-3\right)-\left(-2\dfrac{2}{5}\right)=\left(-3\right)-\left(-\dfrac{12}{5}\right)=\left(-\dfrac{15}{5}\right)+\left(-\dfrac{12}{5}\right)=-\dfrac{27}{5}\)
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)
Do đó: \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
a) \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2.3\right)^5}{\left(0,2\right)^5.\left(0,2\right)}=\dfrac{\left(0,2\right)^5.3^5}{\left(0,2\right)^5.\left(0,2\right)}=\dfrac{3^5}{0,2}=\dfrac{243}{0,2}=1215\)
c) \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^2=2:\left(\dfrac{3}{6}-\dfrac{4}{6}\right)^2=2:\left(-\dfrac{1}{6}\right)^2=2:\dfrac{1}{36}=72\)
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!Giải:
a) \(\dfrac{3}{5}x-\dfrac{2}{3}=\dfrac{-1}{2}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{-1}{2}+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{1}{6}\)
\(\Leftrightarrow x=\dfrac{1}{6}:\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{5}{18}\)
Vậy \(x=\dfrac{5}{18}\).
b) \(\left(\dfrac{1}{2}-x\right).\dfrac{2}{3}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{2}-x=\dfrac{1}{8}:\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{2}-x=\dfrac{3}{16}\)
\(\Leftrightarrow x=\dfrac{1}{2}-\dfrac{3}{16}\)
\(\Leftrightarrow x=\dfrac{5}{16}\)
Vậy \(x=\dfrac{5}{16}\).
c) \(\left|2x-\dfrac{3}{7}\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{3}{4}+\dfrac{1}{2}\)
\(\Leftrightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{7}=\dfrac{5}{4}\\2x-\dfrac{3}{7}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{47}{28}\\2x=-\dfrac{23}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{47}{56}\\x=-\dfrac{23}{56}\end{matrix}\right.\)
Vậy \(x=\dfrac{47}{56}\) hoặc \(x=-\dfrac{23}{56}\).
d) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(\Leftrightarrow2\left(2x+1\right)=3\left(x-5\right)\)
\(\Leftrightarrow4x+2=3x-15\)
\(\Leftrightarrow4x-3x=-15-2\)
\(\Leftrightarrow x=-17\)
Vậy \(x=-17\).
Chúc bạn học tốt!!!
a. \(\dfrac{3}{5}x-\dfrac{2}{3}=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{5}{18}\)
b) \(\left(\dfrac{1}{2}-x\right).\dfrac{2}{3}=\dfrac{1}{8}\)
\(\Rightarrow x=\dfrac{5}{16}\)
c) \(\left|2x-\dfrac{3}{7}\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{5}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{7}=\dfrac{5}{4}\\2x-\dfrac{3}{7}=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{47}{56}\\x=\dfrac{-23}{56}\end{matrix}\right.\)
d) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(\Rightarrow4x+2=3x-15\)
\(\Rightarrow x=-17\).
\(a.-8:\left(4\dfrac{1}{5}x+\dfrac{3}{10}\right)=4\dfrac{4}{9}\)
\(4\dfrac{1}{5}x+\dfrac{3}{10}=\left(-8\right):4\dfrac{4}{9}\)
\(4\dfrac{1}{5}x+\dfrac{3}{10}=\dfrac{-9}{5}\)
\(4\dfrac{1}{5}x=\dfrac{-9}{5}-\dfrac{3}{10}\)
\(4\dfrac{1}{5}x=\dfrac{-21}{10}\)
\(x=\dfrac{-21}{10}:\dfrac{21}{5}\)
\(x=\dfrac{-1}{2}\)
Vay \(x=\dfrac{-1}{2}\).
\(b.4\dfrac{2}{3}-\left(\dfrac{3}{5}:x\right)=-20\%\)
\(\dfrac{14}{3}-\left(\dfrac{3}{5}:x\right)=\dfrac{-1}{5}\)
\(\dfrac{3}{5}:x=\dfrac{14}{3}-\dfrac{-1}{5}\)
\(\dfrac{3}{5}:x=\dfrac{73}{15}\)
\(x=\dfrac{3}{5}:\dfrac{73}{15}\)
\(x=\dfrac{9}{73}\)
Vay \(x=\dfrac{9}{73}\).
Câu c; d; e tương tự nhé.
a: \(=\dfrac{5\cdot\left(8-6\right)}{10}=\dfrac{5\cdot2}{10}=1\)
b: \(\dfrac{\left(-4\right)^2}{5}=\dfrac{16}{5}\)
\(B=\dfrac{3}{7}-\dfrac{1}{5}-\dfrac{3}{7}=-\dfrac{1}{5}\)
c: \(C=\left(6-2.8\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)
\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\)
\(=5\cdot2-\dfrac{32}{5}=10-\dfrac{32}{5}=\dfrac{18}{5}\)
d: \(D=\left(\dfrac{-5}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)
\(=\dfrac{27}{24}\cdot\dfrac{-8}{17}=\dfrac{-9}{8}\cdot\dfrac{8}{17}=\dfrac{-9}{17}\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
Áp dụng t/c dãy tỉ số bằng nhau: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
Từ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(VT=\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{bk^3+b^3}{dk^3+d^3}=\dfrac{b.\left(k+1\right)^3}{d.\left(k+1\right)^3}=\dfrac{b}{d}\)
\(VP=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b.\left(k+1\right)^3}{d.\left(k+1\right)^3}=\dfrac{b}{d}\)
Vậy \(VT=VP\left(đpcm\right)\)
____________
VT = vế trái
VP = vế phải
\(#NqHahh\)