K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

c, Ta có : a+b+c=0 ⇒ c=-(a+b)

⇒ a3+b3+c3= a3+b3-(a+b)3= x3+y3-(x3+3x2y+3xy2+y3)= x3+y3-x3-3x2y-3xy2-y3= -3x2y-3xy2= -3xy(x+y)= 3xyz(đpcm)

22 tháng 8 2018

Câu a : Ta có :

\(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\)

Câu b : Khai triển VT ta có :

\(VT=\left(a+b+c\right)^3-a^3-b^3-c^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Luôn đúng vì \(a+b+c=0\)

Câu a : Ta có : \(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\) ( đpcm )

Câu b : \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a+b+c=0\) ( đúng )

18 tháng 11 2018

a)Đặt A=(x+y+z)3-x3-y3-z3
Xét (x+y+z)3=[(x+y)+z]3=(x+y)3+z3+3z(x+y)(x+y+z) =x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)
=(x3+y3+z3)+3(x+y)(xy+xz+yz+z2)
=(x3+y3+z3)+3(x+y)[(xy+yz)+(xz+z2)]
=(x3+y3+z3)+3(x+y)[y(x+z)+z(x+z)]
=(x3+y3+z3)+3(x+y)(x+z)(y+z)
Từ đó suy ra A=(x3+y3+z3)+3(x+y)(x+z)(y+z)-x3-y3-z3=3(x+y)(x+z)(y+z)

21 tháng 11 2018

Đề có đúng ko vậy (x+y+c)3 ???

22 tháng 11 2018

xin hỗi viết thiếu chỗ kia là -x3 -y3 -z3=....

3 tháng 1 2017

bài 1

ab+bc+ca=0

=>ab+bc=-ca

ta có (a+b)(b+c)(c+a)/abc

=> (ab+ac+bc+b2)(c+a)/abc

=> (0+b2)(c+a)/abc

=>b2c+b2a/abc

=>b(ab+bc)/abc

=>b(-ac)/abc

=>-abc/abc=-1

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

14 tháng 10 2019

bài 4. Có x^2 + y^2 + z^2 <0,x,y,z>0 nên đề bài sai

28 tháng 9 2016

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 9 2016

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k