Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)
= a+b-c-a+b-c+b+c-a-b+a+c
=(a-a-a+a)+(b+b+b-b)+(-c-c+c+c)
= 0 + ( b+b) + 0
= 2b
xong oy đó , nhớ mink đấy
1) Ta có : (a-b+c)-(a+c) = -b
=> a-b+c-a-c = -b
=> (a-a)+(c-c)-b = -b
=> 0 + 0 - b = -b
=> -b = -b
Vậy (a-b+c)-(a+c) = -b
2) Ta có (a+b)-(b-a)+c = 2a+c
=> a+b-b+a+c = 2a+c
=> (a+a)+(b-b)+c = 2a+c
=> 2a+0+c = 2a+c
=> 2a+c = 2a+c
Vậy (a+b)-(b-a)+c = 2a+c
3) -(a+b-c)+(a-b-c) = -2b
=> -a-b+c+a-b-c = -2b
=> (-a+a)+[-b+(-b)]+(c-c) = -2b
=> 0+(-2b)+0 = -2b
Vậy -(a+b-c)+(a-b-c) = -2b
1(a-b+c)-(a+c) 2(a+b)-(b-a)+c
=a-b+c-a-c =a+b-b+a+c
=a+(-b)+c+(-a)+(-c) =a+(b-b)+a+c
=[a+(-a)]+[c+(-c)]+(-b) =a+0+a+c
=0+0+(-b) =a+a+c
=-b =2a+c
3) - (a+b-c)+(a-b-c)
= -a-b+c+a-b-c
=(-a+a)+(c-c)-b-b
=-2b
\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)
\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)
\(\Leftrightarrow\text{0=0}\)
\(\Rightarrow\text{ĐPCM}\)
\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)
\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)
\(-2a+4b-2c=2b\)
\(-2a+4b-2c-2b=0\)
\(-2a+2b-2c=0\)
\(đpcm\)
a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )
b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )
c) * Suy nghĩ các thứ *
a(b+c)-[a(-b-d)]=-a(bc-d)
\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)
\(VP=a\left(bc-d\right)=-abc+ad\)
2 đẳng thức này sau khi rút gọn không = nhau
=> 2 đẳng thức này k bằng nhau
a) Vế trái: Dùng quy tắc chuyển vế
a - b -a - b + 2a - b - 2a + 3b
= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0
Mà Vế phải = 0
Suy ra hằng đẳng thức đúng
b) Tương tự: Vế trái
a + b - c - a +b - c + b +c - a - b + a + c
= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b
Mà vế phải = 2b
Suy ra hằng đẳng thức đúng :D
\(\left(a+b-c\right)-\left(a-b+c\right)+2c=2b\)
phân tích vế trái ta có
\(=a+b-c-a+b-c+2c\)
\(=\left(a-a\right)+\left(b+b\right)-\left(c+c\right)+2c\)
\(=2b-2c+2c\)
\(=2b\)( điều phải chứng minh)
\(\left(a-b\right).\left(a-b\right)=a^2-2ab+b^2\)
phân tích vế trái ta có
\(=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)( sử dụng hằng đẳng thức bình phươgn của 1 hiệu ) ( đpcm)
k nha ^_^
Sao cái thứ 2 lại
( a - b ) ^2 = a^2 - 2ab + b^2 thế
a^2 - 2ab thì = 0 đúng ko
Nhưng còn b^2 thì sao banj giải thích cho mk đc ko đc thì mk k cho
Mik ko viết lại đề:
a, = a - b + c - a - c = ( a- a) + ( c- c) + b = b
b, = a + b - b + a + c = ( a + a) + ( b - b) + c = 2a + c
c, = -a -b + c + a - b -c = ( -a + a) + ( -b -b) + ( c - c) = - 2b
d, = ab + ac - ab - ad = ac - ad = a(c - d)
e, = ab - ac + ad + ac = ab + ad = a( b + d)
Tính ra thôi
a ) ( -a + c - b ) - ( c -a + b )
= ( -a + c - b ) - c + a - b
= ( -a + a ) + ( c - c ) - b - b
= 0 + 0 -2b
= -2b ( đpcm )
b ) a.( b + c ) - b. (a -c )
= ab + ac - ab + bc
= ( ab - ab ) + ac + bc
= ac + bc
= ( a + b ) .c ( đpcm )
a) VT=(-a+c-b)-(c-a+b)=-a+c-b-c+a-b
VP=-2b
\(\Rightarrow\)VT=VP\(\Rightarrow\)(-A+C-B)-(C-A+B)=-2B
b) VT = a( b+ c) - b(a - c)= ab+ac-ab+bc=ac+bc=c(a+b)=VP(đpcm)
thnk you nha mình cũng chúc bạn có một năm mới luôn vui vẻ hạnh phúc đầm ấm bên gia đình.