K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

\(x^2+x+\frac{1}{2}\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)

Vậy đa thức trên vô nghiệm

11 tháng 4 2021

f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

      =\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

      =\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)

=>f(x)≥\(\dfrac{3}{4}\)

=>đa thức trên vô nghiệm

11 tháng 4 2021

Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:

Xét x≥0 thì x+1>0

       x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0                               (1)

Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0                   (2)

Xét x≤-1 thì x<0 và x+1≤0. Do đó

    x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0                           (3)

Từ (1), (2), (3)=> đa thức f(x) vô nghiệm

17 tháng 4 2017

Ta có P(x)=x^2+2x+x+2+3

                =x(2+x)+x+2+3

                =(x+2)^2+3

Mà (x+2)^2>=0=>P(x)>0

=> P(x) vô nghiệm

23 tháng 6 2023

`K(-1/2)>1?`

23 tháng 6 2023

`x^2-x>=0?`

 

25 tháng 4 2018

Câu 1:

Ta có:

\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

nên\(\left(x+1\right)^2+1\ge1\)

\(\Rightarrow P\left(x\right)\ge1\ne0\)

Vậy đa thức \(P\left(x\right)\) không có nghiệm

25 tháng 4 2018

Câu 2:

Ta có:

\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)

Vậy đa thức \(P\left(x\right)\) không có nghiệm.

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

10 tháng 4 2016

Ta có :-5x4< hoặc = 0(*)

           -9x2< hoặc = 0(**)

            -4<0(***)

TỪ (*);(**);(***) suy ra -5x4-9x2-4< hoặc = -4

Vậy đa thức N(x)=-5x4-9x2-4 là vô nghiệm (không có nghiệm)

10 tháng 4 2016

Huỳnh Thị Thiên Kim: phân tích hằng đẳng thức

`6x^2+9=0`

Vì \(x^2\ge0\text{ }\forall\text{ x}\)

`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)

`\rightarrow` Đa thức vô nghiệm.

Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:

\(6x^2+9=0\)

\(\rightarrow\text{ }6x^2=0-9\)

\(\rightarrow\text{ }6x^2=-9\)

Mà \(x^2\ge0\text{ }\forall\text{ x}\)

\(\rightarrow\text{ Đa thức vô nghiệm.}\)

(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).

17 tháng 5 2023

Dùng phương pháp phản chứng em nhé:

Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:

6\(x^2\) + 9 = 0

Mặt khác ta có:  \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)

vậy 6\(x^2\) + 9 = 0 (là sai) hay 

Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)

\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)

Do đó: M vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.