\(P\left(x\right)=x^2+1\) vô nghiệm 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\forall x\)

Vậy đa thức p(x) vô nghiệm

26 tháng 4 2019

Ta có : \(P\left(x\right)=x^2+1\)

 => \(x^2+1=0\)

=> \(x^2=\left(-1\right)\)

=> \(P\left(x\right)=x^2+1\)  Vô nghiệm

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

19 tháng 4 2020

Bài 1:

Mình sửa lại đề 1 chút:  \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)

Số hạng trong dãy là: (101-1):2+1=51

P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101

Vì (-1)2n+1=-1 với n thuộc Z

=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)

=> P(-1)=-51

23 tháng 2 2019

a, f(1) = 100 + 99 + ... + 2 + 1 + 1

=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"

=> f(x) = 4951 

Hihi..

23 tháng 2 2019

b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)

g(1) = 1 . 2016

g(1) = 2016

g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015

g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]

g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]

g(-1) = 1008 - 1008

g(-1) = 0

k nha!!

28 tháng 8 2020

Đặt \(\frac{13}{15}x-\left(\frac{15}{21}+x\right).\frac{7}{30}=0\)

\(\Leftrightarrow\frac{13}{15}x-\left(\frac{1}{6}+\frac{7}{30}x\right)=0\Leftrightarrow\frac{19}{30}x-\frac{1}{6}=0\Leftrightarrow x=\frac{5}{19}\)

Tương tự thôi 

29 tháng 8 2020

Bài làm:

Ta có: \(2\cdot\left(2-x\right)+\frac{1}{2}\cdot\left(2-x\right)^2=0\)

\(\Leftrightarrow\left(2-x\right)\left[2+\frac{1}{2}\left(2-x\right)\right]=0\)

\(\Leftrightarrow\left(2-x\right)\left(3-\frac{x}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\3-\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

29 tháng 8 2020

2( 2 - x ) + 1/2( 2 - x )2

Đa thức có nghiệm <=> 2( 2 - x ) + 1/2( 2 - x )2 = 0

                               <=> ( 2 - x )[ 2 + 1/2( 2 - x ) ] = 0

                               <=> ( 2 - x )[ 2 + 1 - 1/2x ]

                               <=> ( 2 - x )( 3 - 1/2x ) = 0

                               <=> \(\orbr{\begin{cases}2-x=0\\3-\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

5 tháng 5 2019

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath:bạn tham khảo.