Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
Ta có E = \(3x^2+x+5=3\left(x^2+\frac{x}{3}+\frac{5}{3}\right)=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}+\frac{59}{36}\right)\)
\(=3\left(x+\frac{1}{6}\right)^2+\frac{59}{12}\ge\frac{59}{12}>0\)
=> E luôn dương với mọi x
Trả lời:
\(E=3x^2+x+5=3\left(x^2+\frac{1}{3}x+\frac{5}{3}\right)=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}+\frac{59}{36}\right)\)
\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{59}{36}\right]=3\left(x+\frac{1}{6}\right)^2+\frac{59}{12}\)
Ta có: \(\left(x+\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+\frac{1}{6}\right)^2+\frac{59}{12}\ge\frac{59}{12}>0\forall x\)
Dấu "=" xảy ra khi x + 1/6 = 0 <=> x = - 1/6
Vậy biểu thức E luôn dương.
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
x4 - x3 + 3x2 - 2x + 2
= x4 - x3 + x2 + 2x2 - 2x + 2
= x2(x2 - x + 1) + 2(x2 - x + 1)
= (x2 + 2)(x2 - x + 1)
= (x2 + 2)(x2 - x + 1/4 + 3/4)
= (x2 + 2)[(x - 1/2)2 + 3/4]
x2 + 2 lớn hơn hoặc bằng 2
(x - 1/2)2 + 3/4 lớn hoăn hoặc bằng 3/4
(x2 + 2)[(x - 1/2)2 + 3/4] lớn hơn hoặc bằng 3/2 > 0 (đpcm)
(x-3)(1-x) - 2=x-x2-3+3x-2=-x2+4x-5
=-x2+4x-4-1
=-(x2-4x+4)-1
=-(x-2)2-1<0 vơi mọi x ( vì -(x-2)2\(\le\)0)
vậy đa thức (x-3)(1-x)-2 luôn âm vơi mọi x
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)
x^2+3x+3
=x^2+3x+9/4+3/4
=(x+3/2)^2+3/4>=3/4>0 với mọi x
-x^2-3x-5
=-x^2-3x-3-2
Có x^2+3x+3>0
=>-x^2-3x-3<0
<=>đccm