Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(g\left(x\right)=x^2+8x+12=\left(x+2\right)\left(x+6\right)\)
Vì g(x) là đa thức bậc 2 nên đa thức dư khi chia f(x) cho g(x) là đa thức bậc nhất.
Đặt đa thức dư khi chia f(x) cho g(x) là h(x)= ax+b.
Ta có
\(h\left(-2\right)=f\left(-2\right)\)
\(\Leftrightarrow-2a+b=1987\)(1)
\(h\left(-6\right)=f\left(-6\right)\)
\(\Leftrightarrow-6a+b=1987\)(2)
Từ (!)(2) suy ra:
\(-2a+b=-6a+b=1987\)
\(\Leftrightarrow-2a=-6a\Leftrightarrow a=0\Rightarrow b=1987\)
Vậy số dư khi chia fx ccho gx là 1987
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
Tách hết ra rồi nhóm lại theo g(x)
tách 0 ra bạn ơi