Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+2x2+1
Ta có :
x4 ≥ 0 ∀ x
x2 ≥ 0 ∀ x => 2x2 ≥ 0 ∀ x
=> x4+2x2+1 ≥ 1 >0
Suy ra đa thức trên vô nghiệm
\(H\left(x\right)=2x^2-3x+\dfrac{10}{2}\)
\(H\left(x\right)=x^2+x^2-2\cdot\dfrac{3}{2}\cdot x+5\)
\(H\left(x\right)=x^2+x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{11}{4}\)
\(H\left(x\right)=x^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Mà: \(x^2\ge0\forall x\) , \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\) và \(\dfrac{11}{4}>0\)
\(\Rightarrow H\left(x\right)=x^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)
Vậy: \(H\left(x\right)\) là đa thức vô nghiệm
\(P\left(x\right)=x^4+2x^2+3=x^4+2x^2+1+2=\left(x^2+1\right)^2+2\ge2>0\forall x\)
Đặt P(x)=0
Vì \(x^4>=0\)
và \(2x^2>=0\)
nên P(x)=x4+2x2+3>=3>0
=>P(x) vô nghiệm
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Ta có: (x-3)2 \(\ge0\forall x\)
\(\Rightarrow x^2\ge9\forall x\)
\(\Rightarrow x^2+\left(x-3\right)^2\ge9\forall x\)
Vậy đa thức trên vô nghiệm.
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4
Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm
Ta có : -2x2+x >/ 0
=> -2x2+x-3 >/ -3 < 0
Vậy đa thức trên không có nghiệm (vô nghiệm)