Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
=\(3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=10\left(3^n-2^{n-1}\right)\)
Luôn luôn chia hết cho 10 => ĐPCM
Ta có : 3^n+2 + 2^n+2 + 3^n + 2^n = 3^n.9 + 2^n.4 + 3^n + 2^n = 3^n. ( 9+1) + 2^n.(4+1) = 3^n.10 + 2^n.5
Vì 3^n.10 chia hết cho 10 và 2^n+5 chia hết cho 10 (2.5) => 3^n.10 + 2^n.5 chia hết cho 10
Vậy 3^n+2 + 2^n+2 + 3^n + 2^n chia hết cho 10
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
Ta có: \(D=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
Vì n>0 \(\Rightarrow2^n⋮2\)
\(\Rightarrow\left(2^n.5\right)⋮2\)
Mà \(\left(2^n.5\right)⋮5\)
\(\Rightarrow\left(2^n.5\right)⋮\left(2.5\right)=10\)
Ta có:\(\hept{\begin{cases}\left(2^n.5\right)⋮10\\\left(3^n.10\right)⋮10\end{cases}}\Rightarrow\left(3^n.10-2^n.5\right)⋮10\)
ta có : 3n+2-2n+2+3n-2n = 3n.9 - 2n.4+3n-2n
= 3n(9+1) - 2n(4+1)
=3n.10 - 2n.5
=3n.10 - 2n-1.10
=10.(3n-2n-1) chia hết cho 10
=> 3n+2-2n+2+3n-2n chia hết cho 10
Mà dạng toán này là toán lớp 7 ko phải loại lớp 6 đâu!