K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

Gọi 3 số nguyên tố lẻ liên tiếp là a ; a + 2 ; a + 4 (a là số nguyên tố lẻ)

- Nếu a = 3 thì có ba số 3;5;7 thỏa mãn đề bài.

- Nếu a > 3 thì a = 3k + 1 hoặc a = 3k + 2 (k \(\in\) N*)

+) Với a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, là hợp số, loại.

+) Với a = 3k + 2 thì a + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3, là hợp số, loại.

            Vậy chỉ có 3 số nguyên tố lẻ liên tiếp là 3;5;7.

24 tháng 12 2015

gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3; ƯCLN(2k+1;2k+3)

ta có : 2k+1 chia hết cho d

2k+3 chia hết cho d

-> 2k+3-(2k+1) chia hết cho d

-> 2k+3-2k-1 chia hết cho d

-> 2 chia hết cho d

vậy d thuộc Ư(2)={ 1;2 }

vì 2k+1 và 2k+3 là 2 số lẻ liên tiếp nên d không thể bằng 2

-> d=1

vậy 2k+1;2k+3 là 2 số nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau (đpcm)

 

3 tháng 12 2019

Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.

Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.

Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (k ∈ N)

+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.

+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.

=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự  nhiên lẻ liên tiếp là số nguyên tố

13 tháng 7 2019

26 tháng 7 2016

Vì 3,5 ,7đều chia hết cho chính nó và 1 nên chúng là số nguyên tố!

ai chẵng biêt vậy

 

19 tháng 2 2020

Gọi 2k+1,2k+3,2k+52k+1,2k+3,2k+5 là 3 số tự nhiên lẻ liên tiếp

+) Nếu kk chia hết cho 3 →2k+3→2k+3 chia hết cho 3

+) Nếu kk chia 3 dư 1 →2k+1→2k+1 chia hết cho 3

+) Nếu kk chia 3 dư 2 →2k+5→2k+5 chia hết cho 3 

→→ 3 tự nhiên lẻ tiên tiếp luôn tồn tại 1 số chia hết cho 3

→→ Nếu k=1→3,5,7k=1→3,5,7 là số nguyên tố 

      +)Nếu k>1→2k+1,2k+3,2k+5k>1→2k+1,2k+3,2k+5 là 3 số tự nhiên lớn hơn 3 do trong 3 số luôn tồn tại 1 số chia hết cho 3 suy ra số đó là hợp số →k>1→k>1 không có bộ 3 số nào thỏa mãn đề 

19 tháng 2 2020

Gọi 3 số tự nhiên lẻ liên tiếp là : p ; p+2 ; p+4

Với p=2 => p+2=4

Vì 4 là hợp số nên p là số nguyên tố khác 2

Với p=3 => p+2=5 => p+4=7

Vì 3, 5 và 7 là các số nguyên tố 

=> 3, 5 và 7 là bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố

p lớn hơn hoặc bằng 3 => p bằng 3k+1 hoặc 3k+2  (k là số tự nhiên khác 0)

Với p=3k+1 => p+2=3k+3 chia hết cho 3 (là hợp số nên loại)

Với p=3k+2 => p+4=3k+6 chia hết cho 3 (là hợp số nên loại)

=> Chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố

Vậy chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố.

Chúc bạn học tốt!

#Huyền#

3 tháng 11 2016

Do p; q là 2 số nguyên tố lẻ liên tiếp nên giả sử p = 2.k + 1; q = 2.k + 3 (k ϵ N)

Ta có: p + q = 2m

=> 2.k + 1 + 2.k + 3 = 2m

=> 4.k + 4 = 2m

=> 2.k + 2 = m

=> 2.(k + 1) = m

\(\Rightarrow m⋮2\)

Mà 1 < 2 < m => m là hợp số (đpcm)

4 tháng 11 2016

Thanks cậu nhiều >w<

27 tháng 8 2016

Ban lam giup minh

Tinh nhanh lop 4

42 x 43 - 12 x 9 - 42 x 3