Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d là ƯCLN của n và n+1
=> n chia hết cho d;n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy n và n+1 nguyên tố cùng nhau với mọi n
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d là ƯCLN(12n+1 ; 30n+2)
=> 6(12n + 1 ) - 2(30n + 2 ) chia hết cho d
=> 2 chia hết cho d
Mà 12n+1 lẻ
=> d = 1
Vậy ........
Gọi d là ước chung của 12n+1 và 30n+2
\(\Rightarrow\)12n+1 \(⋮\)d và 30n+2\(⋮\)d
\(\Rightarrow\)60n+5\(⋮\)d và 60n+4\(⋮\)d
\(\Rightarrow\)60n+5-60n-4\(⋮\)d
\(\Rightarrow\)1\(⋮\)d \(\Rightarrow\)d=1
vậy 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
Đặt \(ƯCLN\left(5m+1,4m+1\right)=d\) (với \(d\inℕ^∗\))
\(\Rightarrow\left\{{}\begin{matrix}5m+1⋮d\\4m+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(5m+1\right)⋮d\\5\left(4m+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20m+4⋮d\\20m+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left(20m+5\right)-\left(20m+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5m+1,4m+1\right)=1\), suy ra \(5m+1\) và \(4m+1\) là 2 số nguyên tố cùng nhau.
Gọi ƯCLN(5m+1,4m+1) là d \(\left(d\ne0\right)\)
=> \(5m+1⋮d;4m+1⋮d\)
=> \(4\left(5m+1\right)⋮d;5\left(4m+1\right)⋮d\)
=> \(20m+4⋮d;20m+5⋮d\)
=> \(\left(20m+5\right)-\left(20m+4\right)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 5m +1 và 4m +1 là hai số nguyên tố cùng nhau