K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

tổng các số hữu tỉ và số vô tỉ là số vô tỉ

4 tháng 12 2019

a) giả sử tổng số hữu tỉ và số vô tỉ là số hữu tỉ

Ta có a+b=c(a,c là số hữu tỉ ; b là số vô tỷ)

=> b=c-a 

mà c-a là số hữu tỉ ( do a,c là số hữu tỉ)

=> b là số hữu tỉ trái đề bài

Vậy tổng số hữu tỉ và số vô tỉ là số vô tỉ

b) phần này cần điều kiện số hữu tỉ khi nhân kia phải khác 0

Giả sử tích một số vô tỉ và một số hữu tỉ là 1 số hữu tỉ

Ta có a.b=c (a,c là số hữu tỉ ; b là số vô tỷ, a khác 0)

=> b=c/a 

mà c/a là số hữu tỉ ( do a,c là số hữu tỉ)

=> b là số hữu tỉ trái đề bài 

Vậy tích một số vô tỉ và một số hữu tỉ là 1 số vô tỉ

15 tháng 3 2020

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

15 tháng 3 2020

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

17 tháng 10 2018

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~ 

27 tháng 10 2016

a) Giả sử x + y là số hữu tỉ => x + y = a (a \(\in\) Q)

=> y = a - x, là số hữu tỉ, trái với đề bài

=> điều giả sử là sai

=> x + y là số vô tỉ (đpcm)

lm tương tự vs câu b

12 tháng 10 2017

a) Có x thuộc Q; y thuộc I

Giả sử x + y = a thuộc Q

=> y = a - x thuộc Q (vì x thuộc Q)

Điều này trái với giả thiết y thuộc I

=> Điều giả sử là sai

=> x + y là số vô tỉ

Vậy x thuộc Q; y thuộc I thì x + y là số vô tỉ.

b) Có x thuộc Q; y thuộc I

Giả sử x - y = a thuộc Q

=> y = x - a thuộc Q (vì x thuộc Q)

Điều này trái với giả thiết y thuộc I

=> Điều giả sử là sai

=> x - y là số vô tỉ

Vậy x thuộc Q; y thuộc I thì x - y là số vô tỉ.