\(\sqrt{3}-\sqrt{2}\)                         ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

9 tháng 8 2020

Bài làm:

a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ

=> \(1+\sqrt{2}\) vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ

b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ

=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ

=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ

19 tháng 4 2020

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....

20 tháng 7 2018

a, Giả sử \(\sqrt{6}\) là số hữu tỉ

\(\Rightarrow\) \(\sqrt{6}\)viết được dưới dạng phân số tối giản \(\frac{a}{b}\)\(\Rightarrow\) \(\sqrt{6}\)\(\frac{a}{b}\)\(\Leftrightarrow\) (\(\sqrt{6}\))= (\(\frac{a}{b}\)) \(\Leftrightarrow\) a2 = 6b2 mà (a, b) = 1 \(\Rightarrow\) a2 chia hết cho 6 mà (6, 1) = 1 \(\Rightarrow\) a chia hết cho 6 (1)

Đặt a = 6k \(\Rightarrow\) a2 = 36k2 và a = 6b\(\Rightarrow\) 36k2 = 6b2 \(\Leftrightarrow\) b= 6k2 mà (6, 1) = 1 \(\Rightarrow\) b2 chia hết cho 6 \(\Rightarrow\) b chia hết cho 6 (2)

Từ (1), (2) và \(\frac{a}{b}\)là phân số tối giản \(\Rightarrow\) Trái với giả thiết (a, b) = 1.

Vậy \(\sqrt{6}\)là số vô tỉ.

b, Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ, đặt \(\sqrt{1+\sqrt{2}}\)= a

Ta có: a2 = (\(\sqrt{1+\sqrt{2}}\))2 = 1 + \(\sqrt{2}\)\(\Leftrightarrow\) a2 - 1 = \(\sqrt{2}\)

Ta có: a2 - 1 là số hữu tỉ mà \(\sqrt{2}\)là số vô tỉ \(\Rightarrow\) vô lí

Vậy \(\sqrt{1+\sqrt{2}}\)là số vô tỉ

16 tháng 7 2018

1, bình phương x rồi rút gọn ta được

\(x^2=3\sqrt{10}-4\sqrt{2}-2\sqrt{2}.\sqrt{2\left(\sqrt{5}-1\right)\left(\sqrt{5}-2\right)}\)

=\(3\sqrt{10}-4\sqrt{2}-2\sqrt{2}.\sqrt{14-6\sqrt{5}}\)

=\(3\sqrt{10}-4\sqrt{2}-2\sqrt{2}.\sqrt{\left(3-\sqrt{5}\right)^2}\)

=\(3\sqrt{10}-4\sqrt{2}-2\sqrt{2}\left(3-\sqrt{5}\right)\)

=\(5\sqrt{10}-10\sqrt{2}>0\)

=>x=\(\sqrt{5\sqrt{10}-10\sqrt{2}}\)

4 tháng 7 2018

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)

\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)

 \(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)

\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)

Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên

\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)

Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )

Với \(a=b=0\Rightarrow c=0\left(TM\right)\)

Vậy a=b=c=0 thỏa mãn đề bài

3 tháng 7 2018

mình mới học lớp 7 thôi

29 tháng 10 2016

Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ

Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ

Lấy (2) - (1) và (2) + (1) ta được

\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ