Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN (2x + 1, 6x + 5), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2x+1⋮d\\6x+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2x+1\right)⋮d\\6x+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6x+3⋮d\\6x+5⋮d\end{cases}}}\)
\(\Rightarrow\left(6x+5\right)-\left(6x+3\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2x + 1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2x+1,6x+5\right)=1\)
\(\Rightarrow\) 2x + 1 và 6x + 5 là hai số nguyên tố cùng nhau.
Nếu p = 3k hay p = 3 thì 8p-1 = 23 là số nguyên tố. 8p+1 = 25 là hợp số.
Nếu p = 3k+1 thì 8p +1 = 8(3k+1) + 1 = 24k + 9 là hợp số.
Nếu p = 3k + 2 thì 8p -1 = 8(3k+2 ) - 1 = 24k + 15 là hợp số không thể là số nguyên tố.
Bài toán được chứng minh.
1) trả lời
4253 + 1422 =5775
mà 5775 chia hết cho 3;5
=>nó là hợp số
mình xin lỗi ấn nhầm bây giờ mk giải tiếp
giải
2) để 5x + 7 là số nguyên tố
=>5x+7 chia hết cho 5x+7 và 1
=>x thuộc (2;6)
3) trả lời
n.(n+1) là hợp số bởi vì
nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2
nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2
mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao
chào bạn