Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyễn danh bảo - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của nguyễn danh bảo - Toán lớp 6 - Học toán với OnlineMath
Ta có \(\overline{abab}=101\cdot ab\)
Mà như ta đã biết số chính phương là số có căn bậc hai là số tự nhiên
Giả sử đặt c là căn bậc hai của \(\overline{abab}\)( c là số tự nhiên)
Suy ra \(c^2=\overline{abab}=101\cdot\overline{ab}\)
Ta có \(c^2=101\cdot\overline{ab}\)
để số \(c^2\)có nghĩa thì \(\overline{ab}=101\)
Trong khi đó \(\overline{ab}\)là số có hai chữ số nên
\(\overline{ab}\ne101\)
Suy ra \(c^2\)không có nghĩa
Suy ra \(\overline{abab}\)không phải là số chính phương
Câu 2 làm tương tự
Câu hỏi của nguyễn danh bảo - Toán lớp 6 - Học toán với OnlineMath
trả lời :
a, giả sử abab là số chính phương , tức là : n2 = abab = 101 . abô
\(\Rightarrow\) ab \(⋮\) 101 : vô lý .
Vậy abab không là số chính phương
a﴿ Ta có : abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b﴿ Ta có : abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c﴿ Ta có : ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Vậy : abab ; abcabc ; ababab ko phải là số chính phương
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a) Ta có :
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b) Ta có :
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có :
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)
Tick mình nhiệt tình nhé mọi người!
a) Ta có :
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b) Ta có :
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có :
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)
ko phải
+ Ta có : abab = ab x 100 + ab = ab x 101
Vì ab < 100 và 101 là số nguyên tố => ab x 101 không thể là số chính phương
+ Ta có : abcabc = abc x 1000 + abc = abc x 1001
Vì abc < 1000 và 1001 là số nguyên tố => abc x 1001 không thể là số chính phương
Vậy ta có điều phải chứng minh :))