Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
Theo bài ra :
\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)
<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)
Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)
Ta có bảng xét dấu :
\(-\infty\) | -5 | -1 | 1 | 3 | \(+\infty\) | ||||
(x+5) | - | 0 | + | + | + | + | |||
x2-1 | + | + | 0 | - | 0 | + | + | ||
3-x | + | + | + | + | 0 | - | |||
A | - (loại) | 0 (loại) | +(t.m) | 0(loại) | -(loại) | 0(loại) | +(t.m) | 0(loại) | -(loại) |
Từ bảng xét dấu trên suy ra :
\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)
\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)
\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)
\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)
What? Lớp 10? Mí bài nỳ dễ mak! Trên lp cs hc mak k giải đc thì thui lun!
Bài 1:
\(\left(x+4\right)\left(y+3\right)=3\)
\(\Rightarrow\left[{}\begin{matrix}x+4=3\\y+3=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3-4\\y=3-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
Vậy \(x=-1;y=0\)
b) \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\dfrac{1}{5}-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{4}{3}-x=-\dfrac{1}{6}\)
\(\Leftrightarrow-x=-\dfrac{1}{6}-\dfrac{4}{3}\)
\(\Leftrightarrow-x=-\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\)
a) ta có :
\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)
hay \(m\left(m^2+m-1\right)\ge0\)
=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)
a, x2 - 2x + 1 + x2 + 6x + 9 = 32
<=. 2x2 + 4x - 22 = 0
<=> x2 + 2x - 11 = 0
\(\Delta' = 1+11=12 \)
PT có 2 nghiệm
x = -1 \(\pm \) 2\(\sqrt{3}\)
(2x+5)(1-2x)>=0
Lập bảng xét dấu ta đc:
TXĐ: D= ngoặc vuông -5/2 ; 1/2 ngoặc vuông
a) Đặt A = (2 + 1)(22 + 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = ( 22 - 1 ) (22 + 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = (24 - 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = (28 - 1)(28 +1)( 216 +1 )
=> A= (216 -1 ) (216 + 1) = 232 - 1 => đpcm
b) 1002 + 1032 + 1052 + 942 = 1012 + 982 + 962 + 1072
<=> \(\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105^2-107^2\right)+\left(94^2-96^2\right)\) = 0
<=> \(\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)\)+ (105 -107)(105+107) + (94 - 96)(96 + 94) = 0
<=> \(2.198+2.204-2.212-2.190\) = 0
<=> \(2\left(198+204-212-190\right)=0\)
<=> \(\left(198-190\right)+\left(204-212\right)=0\)
<=> \(-8+8=0\) (luôn đúng) => đpcm
P/s: đây ko phải bài lớp 10 đâu!