Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với mọi ∀n ε N*, ta có ( . 2n+1) : ( . 2n) = 2.
Suy ra un+1 = un.2, với n ε N*
Vậy dãy số đã chp là một câp số nhân với u1 = , q = 2.
b) Với mọi ∀n ε N*, ta có un+1 = =un.
Vậy dãy số đã cho là một cấp số nhân với u1 = , q =
c) Với mọi ∀n ε N*, ta có un+1 = .
a) Ta có: \({u_{n + 1}} = 3{\left( { - 2} \right)^{n + 1}}\)
Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{3{{\left( { - 2} \right)}^{n + 1}}}}{{3{{\left( { - 2} \right)}^n}}} = \frac{{3{{\left( { - 2} \right)}^n}.\left( { - 2} \right)}}{{3{{\left( { - 2} \right)}^n}}} = - 2\)
Vậy dãy số là cấp số nhân có công bội \(q = - 2\).
b) Ta có: \({u_{n + 1}} = {\left( { - 1} \right)^{\left( {n + 1} \right) + 1}}{.7^{n + 1}} = {\left( { - 1} \right)^{n + 2}}{.7^{n + 1}}\)
Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 2}}{{.7}^{n + 1}}}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}.\left( { - 1} \right){{.7}^n}.7}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = - 7\)
Vậy dãy số là cấp số nhân có công bội \(q = - 7\).
c) Ta có: \({u_1} = 1;{u_2} = 2{u_1} + 3 = 2.1 + 3 = 5;{u_3} = 2{u_2} + 3 = 2.5 + 3 = 13\)
Vì \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số không là cấp số nhân.
A. Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{u_n^2}}{{{u_n}}} = {u_n}\) phụ thuộc vào n nên (\({u_n})\) thay đổi, do đó\(\left( {{u_n}} \right)\) không phải cấp số nhân.
B. Ta có: \(\frac{{{u_{n + 1}}}}{{{{u_n}}}}= 2\), do đó \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 2\).
C. Ta có: \({u_{n + 1}}- {u_n} = 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = 2\) .
D. Ta có: \({u_{n + 1}}- {u_n} = - 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = -2\).
Vậy ta chọn đáp án B.
a) Ta có:
\(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{ - \frac{3}{4}{{.2}^n}}}{{ - \frac{3}{4}{{.2}^{n - 1}}}} = \frac{{{2^n}}}{{{2^{n - 1}}}} = {2^1} = 2\)
Dãy số là cấp số nhân
b) Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{\frac{5}{{{3^n}}}}}{{\frac{5}{{{3^{n - 1}}}}}} = {3^{ - 1}} = \frac{1}{3}\)
Dãy số là cấp số nhân
c) Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{{\left( { - 0,75} \right)}^n}}}{{{{\left( { - 0,75} \right)}^{n - 1}}}} = {\left( { - 0,75} \right)^{ - 1}} = - \frac{4}{3}\)
Dãy số là cấp số nhân
Đáp án đúng là: D
Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).
a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 = - 1 - 4n\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) = - 1 - 4n - 3 + 4n = - 4\)
Vậy dãy số là cấp số cộng có công sai \(d = - 4\).
b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)
Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).
c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)
Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.
d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} = - \frac{5}{3}\)
Vậy dãy số là cấp số cộng có công sai \(d = - \frac{5}{3}\).
\(u_{n+1}=5u_n+a-5\)
Dãy là CSN khi \(a-5=0\Leftrightarrow a=5\)
⇒ (un) là cấp số nhân với công bội q = 2.
⇒ (un) là cấp số nhân với công bội
⇒ (un) là cấp số nhân với công bội