Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
a, a3+b3= (a+b)3-3ab(a+b)
b, a3-b3= (a-b)3+3ab(a-b)
làm kiểu như vở bài tập nha
a) Biến đổi vế phải ta có::
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)
=>đpcm
b) Biến đổi vế phải ta có:
\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2=a^3-b^3=VT\)
=>đpcm
a)\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
A, Biến đổi vế phải ta có :
( a+ b)^3 - 3ab(a+b)
= a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2b- 3ab^2
=a^3 + b^ 3
Vaayj VT = VP Đẳng thức đc CM
b, tương tự
a. Xét VP = (a+b)3–3ab(a+b)
VP=a3+3a2b+3ab2+b3–3a2b–3ab2
VP=a3+b3
Nhận xét : VP=VT=a3+b3
b. Xét VP = (a–b)3+3ab(a–b)
VP=a3−3a2b+3ab2−b3+3a2b–3ab2
VP=a3–b3
Nhận xét : VP=VT=a3−b3
Ta có : a3-b3=(a-b)3+3ab(a-b)
Mà: (a-b)3+3ab(a-b)
=a3-3a2b+3ab2-b3+3a2b-3ab2
=a3-b3
=>đpcm
a/ Ta có : a3+b3=(a+b)3-3ab(a+b)
VP=(a+b)3-3ab(a+b)
=a3+3a2b+3ab2+b3-3a2b-3ab2
=a3+b3
=> đpcm
a, (a+b)^3-3ab(a+b)
= (a^3 + 3a^2b + 3ab^2 + b^3) - (3a^2b + 3ab^2)
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2
= a^3 + b^3 (đpcm)
b, a^3-b^3=(a-b)^3+3ab(a-b)
(a-b)^3+3ab(a-b)
(a^3 - 3a^2b + 3ab^2 - b^3) + (3a^2b - 3ab^2)
= a^3 - 3a^2b + 3ab^2 - b^3 + 3a^2b - 3ab^2
= a^3 - b^3 (đpcm)
a) Biến đổi vế phải :
( a + b )3 - 3ab ( a + b )
= a3 + 3a2 + 3ab2 + b3 - 3a2b - 3ab2
= a3 + b3
= Vế trái ( đpcm )
b) Biển đổi vế phải :
( a - b )3 + 3ab ( a - b )
= a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= a3 - b3
= Vế trái ( đpcm )
a;BIến đổi vế phải ta có
(a + b)^3 - 3ab(a+b) = a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2.b - 3ab^2 = a^3 + b^3
VẬy VT = VP đẳng thức dược CM
b; tương tự
cuyển đổi vế phải
a, (a+b)3-3a(a+b)= a3+3a2b+3ab2+b3-3a2b-3ab2=a3+b3
b, (a-b)3+3ab(a-b)=a3-3a2b+3ab2-b3+3a2b-3ab2=a3-b3