Chứng minh các đẳng thức sau:

a)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

\(1.\)

\(a,\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)

10 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)

b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)

22 tháng 11 2018

Tại vì nó được đề bài cho nên có nghĩa,k có nghĩa thì lm kiểu đếch j?

22 tháng 11 2018

Đùa người ak 😡😡😡😡😡😡

7 tháng 3 2020

Câu 2:

a) \(ĐKXĐ:x\ne1\)

 \(A=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\div\left(1-\frac{2x}{x^2+1}\right)\)

\(\Leftrightarrow A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right)\div\frac{x^2-2x+1}{x^2+1}\)

\(\Leftrightarrow A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\div\frac{\left(x-1\right)^2}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(x-1\right)^2\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{1}{x-1}\)

b) Để A > 0

\(\Leftrightarrow x-1>0\)(Vì\(1>0\))

\(\Leftrightarrow x>1\)

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

1 tháng 4 2019

1. 

Xét hiệu:

\(x^3+y^3-\left(x^2y+xy^2\right)=\left(x^3-x^2y\right)-\left(xy^2+y^3\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\), Với mọi x, y không âm

Vậy \(x^3+y^3\ge x^2y+xy^2\)với mọi x, y không âm

2. \(111\left(x-2\right)\ge1998\Leftrightarrow x-2\ge\frac{1998}{11}\Leftrightarrow x\ge\frac{1998}{11}+2=\frac{2020}{11}\)

3. Xét hiệu:

\(\frac{a-b}{b}-1=\frac{a}{b}-1-1=\frac{a}{b}-2>\frac{2b}{b}-2=2-2=0\)Với mọi , a, b dương

Vậy \(\frac{a-b}{b}>1\)với mọi a, b dương

1 tháng 4 2019

4) xét hiệu:

\(x^2+y^2+z^2+14-\left(4x+2y+6z\right)\ge0\)\

<=> \(x^2-4x+4+y^2-2y+1+z^2-6z+9=\left(x-2\right)^2+\left(y-1\right)^2+\left(z-3\right)^2\ge0\)luôn đúng vs mọi x, y, z

Vậy suy ra điều cần chứng minh

24 tháng 11 2018

2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)

<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

<=>x=y=z=0

24 tháng 11 2018

4,

a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)

=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)

Đồng nhất 2 phân thức ta được:

\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)

b,a=1/4,b=-1/4

c, a=-1,b=1,c=1

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là: Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là (Nhập kết quả dưới dạng số thập phân gọn nhất) Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là: Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ...
Đọc tiếp

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là:

Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là:

Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ số đồng dạng là \(k=\dfrac{2}{5}\).Nếu chu vi của tam giác A’B’C’ là 40cm thì chu vi của tam giác ABC là:

Câu 5: Cho một hình vuông có diện tích bằng diện tích của hình chữ nhật có chu vi là 104cm và chiều dài bằng 2,25 lần chiều rộng. Độ dài cạnh hình vuông đó là:

Câu 6: Tổng tất cả các số nguyên dương n khác 2 sao cho n-2 là ước của n2+1 là

Câu 7: Biểu thức \(P=\dfrac{1}{x^2+x+1}\)​ đạt giá trị lớn nhất khi x=

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 8: Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D. Biết \(AI=\dfrac{3}{4}AD\). Độ dài cạnh BC là:

Câu 9: Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0; (x,y,z\neq 0)\). Giá trị của biểu thức \(\dfrac{yz}{x^2} +\dfrac{xz}{y^2} +\dfrac{xy}{z^2}\)​ là:

Câu 10: Cho \(x^2+y^2=\dfrac{50}{7}xy\) với y>x>0. Giá trị của biểu thức \(P=\dfrac{x-y}{x+y}\) là:

(Nhập kết quả dưới dạng số thập phân gọn nhất)

1
4 tháng 6 2018

Ai giúp mk với mk đang cần gấp

Mk làm được hết

mà vẫn cứ sai hoài à

tìm mãi ko thấy lỗi sai