K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2015

(a-b)3=a3-3a2b+3ab2-b3 (1)

-(b-a)3=-(b3-3b2a+3ba2-a3)=-b3+3ab2-3a2b+a3=a3-3a2b+3ab2-b3 (2)

từ (1) và (2) => VT=VP => đpcm.

(-a-b)2=[(-a)+(-b)]2=(-a)2+2.(-a).(-b)+(-b)2=a2+2ab+b2=(a+b)2

=> VT=VP => đpcm.

5 tháng 7 2016

a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)

              = -b^3+3ab^2a-3ba^2+a^3

             = (a-b)^3

b/ tương tự ta dùng hằng đẳng thức để chứng minh

5 tháng 7 2016

a) a - b = - (b - a) = (-1)*(b - a)

=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3

b) -(a + b) = (- a - b)

=> (-1)2 * (a + b)2 = (-a - b)2

=> (-a -b)2 = (a + b)2

a) (a-b)^3=-(b-a)^3

\(Taco:-\left(b-a\right)^3\)

=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)

\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)

\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)

\(=-\left(a+b\right)\left(-a-b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

20 tháng 5 2019

a) Sử dụng tính chất hai số đối nhau:

(a – b)3 = [(–1)(b – a)]3 =(–1)3(b – a)3 = –1.(b – a)3 = –(b – a)3   (đpcm)

b) (–a – b)2 = [(– 1).(a + b)]2 = (–1)2(a + b)2 = 1.(a + b)2 = (a + b)2 (đpcm)

Học tốt !

20 tháng 5 2019

a, ( a - b )3 

= [( - 1 ) ( b - a )]3

=( - 1 )3 ( b - a ) 3

= - 1 . ( b - a ) 3

= - ( b - a ) 3  ( đpcm )

b , ( - a - b ) 2

= [ ( - 1 ) . ( a + b ) ]

= ( - 1 ) ( a + b ) 2

= 1 . ( a + b ) 2

= ( a + b ) 2 ( đpcm )

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

27 tháng 7 2023

1) \(\left(a+b\right)^2\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\left(dpcm\right)\)

2) \(\left(a-b\right)^3\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)

\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)

27 tháng 7 2023

`a)` 

`(a+b)^2`

`=(a+b)(a+b)`

`=a^2+ab+ab+b^2`

`=a^2+2ab+b^2`

`->` ĐPCM

`b)` `(a-b)^3`

`=(a-b)(a-b)(a-b)`

`=(a^2-2ab+b^2)(a-b)`

`=a^3-3a^2b+3ab^2-b^3`

`->` ĐPCM

14 tháng 2 2019

27 tháng 9 2015

a^3+b^3+c^3-3abc=(a+b)^3-3a^2.b-3a.b^2-3abc=[(a+b)^3+c^3]-3ab(a+b+c)=(a+b+c).[(a+b)^2-c.(a+b)+c^2]-3ab(a+b+c)=(a+b+c).(a^2+2ab+b^2-ac-bc+c^2-3ab)=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)