Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2\\ =\frac{4x^2+4y^2+z^2+8xy-4xz-4yz}{9}+\frac{4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\frac{4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\\ =\frac{9x^2+9y^2+9z^2}{9}=x^2+y^2+z^2\)
- Ta có : \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2x+2z-y}{3}\right)^2\)
\(=\frac{\left(2x+2y-z\right)^2}{9}+\frac{\left(2y+2z-x\right)^2}{9}+\frac{\left(2x+2z-y\right)^2}{9}\)
\(=\frac{\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2x+2z-y\right)^2}{9}\)
\(=\frac{4x^2+4y^2+z^2+8xy-4yz-4xz+4y^2+4z^2+x^2+8yz-4xy-4xz+4x^2+4z^2+y^2+8xz-4xy-4yz}{9}\)
\(=\frac{9x^2+9y^2+9z^2}{9}=\frac{9\left(x^2+y^2+z^2\right)}{9}=x^2+y^2+z^2\)
a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)
\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)
Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)
b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
Câu a:
Xét tử số:
\(x^2(y-z)+y^2(z-x)+z^2(x-y)\)
\(=x^2(y-z)-y^2[(y-z)+(x-y)]+z^2(x-y)\)
\(=x^2(y-z)-y^2(y-z)-y^2(x-y)+z^2(x-y)\)
\(=(x^2-y^2)(y-z)-(y^2-z^2)(x-y)\)
\(=(x-y)(y-z)[(x+y)-(y+z)]=(x-y)(y-z)(x-z)\)
Xét mẫu số:
\(x^2y-x^2z+y^2z-y^3=x^2(y-z)-y^2(y-z)=(x^2-y^2)(y-z)\)
\(=(x-y)(x+y)(y-z)\)
Do đó:
\(\frac{x^2(y-z)+y^2(z-x)+z^2(x-y)}{x^2y-x^2z+y^2z-y^3}=\frac{(x-y)(y-z)(x-z)}{(x-y)(x+y)(y-z)}=\frac{x-z}{x+y}\)
Câu b:
Xét tử số:
\(x^5+x+1=x^5-x^2+x^2+x+1=x^2(x^3-1)+x^2+x+1\)
\(=x^2(x-1)(x^2+x+1)+(x^2+x+1)\)
\(=(x^2+x+1)(x^3-x^2+1)\)
Xét mẫu số:
\(x^3+x^2+x=x(x^2+x+1)\)
Do đó: \(\frac{x^5+x+1}{x^3+x^2+1}=\frac{(x^2+x+1)(x^3-x^2+1)}{x(x^2+x+1)}=\frac{x^3-x^2+1}{x}\)
\(B=\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(\Rightarrow B=\dfrac{x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)}{\left(y-z\right)\left(x^2-y^2\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y+z\right)\left(y-z\right)}{\left(y-z\right)\left(x-y\right)\left(x+y\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x-y\right)\left(x+y-y-z\right)}{\left(y-z\right)\left(x-y\right)\left(x+y\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(y-z\right)\left(x-y\right)\left(x+y\right)}\)
\(\Rightarrow B=\dfrac{x-z}{x+y}\)
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
\(\left(\dfrac{2x+2y-z}{3}\right)^2+\left(\dfrac{2y+2z-x}{3}\right)^2+\left(\dfrac{2z+2x-y}{3}\right)^2\)
\(=\dfrac{4y^2+4x^2+z^2+8xy-4xz-4yz+4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\dfrac{\left(2z+2x-y\right)^2}{9}\)
\(=\dfrac{8y^2+5x^2+5z^2+4xy-8xz+4yz+4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\)
\(=\dfrac{9y^2+9z^2+9x^2}{9}=x^2+y^2+z^2\)