Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
Lời giải:
Kiểu như bạn muốn biến đổi $a^4-b^4$ về dạng có liên quan đến $a+b,ab$ ấy hả?
$a^4-b^4=(a^2-b^2)(a^2+b^2)=(a-b)(a+b)[(a+b)^2-2ab]$
Nếu $a^4\geq b^4$ thì: $a^4-b^4=\sqrt{(a-b)^2}(a+b)[(a+b)^2-2ab]$
$=\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$
Nếu $a^4< b^4$ thì $a^4-b^4=-\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)
(1) tào lao
(1): (a+b)4=(a+b)3 * (a+b)
sử dụng hằng đẳng thức khai triển (a+b)3 sau đó nhân đa thức đó với (a+b) thì ta được vế phải :>
(2): (a+b)5 = (a+b)3*(a+b)2
tương tự khai triển thành 2 đa thức rồi nhân vào với nhau là được vế phải :>