Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
23: \(=\left(2a-b\right)^2-\left(2a-2b\right)^2\)
\(=\left(2a-b-2a+2b\right)\left(2a-b+2a-2b\right)\)
\(=b\left(4a-3b\right)\)
24: \(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)
\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)
\(=\left(a+7b\right)\left(5a-b\right)\)
25: \(=\left(4a-2b\right)^2-\left(4a-4b\right)^2\)
\(=\left(4a-2b-4a+4b\right)\left(4a-2b+4a-4b\right)\)
\(=2b\left(8a-6b\right)\)
=4b(4a-3b)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)
b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)
\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)
\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)
\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)
1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)
Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:
Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.
* Với \(x< -5\) (khoảng đầu)
\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)
Phương trình vô nghiệm.
* Với \(-5\le x\le0,5\) (khoảng giữa)
\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)
\(x=-2\) thỏa mãn điều kiện nên ta lấy.
* Với \(x>0,5\) (khoảng cuối)
\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)
\(x=3\) thỏa nãm điều kiện nên ta lấy.
Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)
Chứng minh bất đẳng thức:
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)
Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
a)
( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )
= ( 6x^2 + 33x - 10x - 55 ) - ( 6x^2 + 14x + 9x + 21 )
= ( 6x^2 + 23x - 55 ) - ( 6x^2 + 23x + 21 )
= 6x^2 + 23x - 55 - 6x^2 - 23x - 21
= ( 6x^2 - 6x^2 ) + ( 23x - 23x ) - ( 55 + 21 )
= -76
=> với mọi x thì giá trị của biểu thức luôn bằng -76
=> đpcm
b)c) tương tự
cái này khá dài nên mik ns lun nha
: bạn nhân đa thức vs đa thức làm bình thường vậy thôi . kết quả là 1 số tự nhiên thì nó kg phụ thuộc vào biến nha
chuk hok tốt
a ) \(VT=\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)\)
\(=\left[\left(2x+3\right)\left(2x-3\right)\right]\left(4x^2+9\right)\)
\(=\left(4x^2-9\right)\left(4x^2+9\right)\)
\(=16x^4-81=VP\left(đpcm\right)\)
b ) \(VT=\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a+b+a-b\right)^2\)
\(=\left(2a\right)^2=4a^2=VP\left(đpcm\right)\)