Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
\(a,M=6+\frac{2x}{x^2+1}\)
ÁP dụng bđt AM-GM ta có
\(M\le6+\frac{2x}{2x}=7\)
Dấu "=" xảy ra khi x=1
b,\(A=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)(bđt Cauchy-Schwarz)
mà \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow A\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi a=b=c
A = ( x2 - 4x + 4 ) + ( y2 + 2y + 1 ) + 7
= ( x - 2 )2 + ( y + 1 )2 + 7 luôn dương nhé ( vì hai bình phương cộng thêm 7 lớn hơn 0 )
\(A=x^2-4x+y^2+2y+12=x^2-4x+4+y^2+2y+1+7\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+7\ge7\)với mọi x,y
Do đó A luôn dương với mọi x,y
a)
2x2+2x+1
=(x+1)2+x2
(x+1)2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1
x2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1
vậy biểu thức này có giá trị dương ( >0 ) với mọi giá trị của biến
b)9x2-6x+2
=(3x+1)2 +1
ta có: (3x+1)2 luôn lớ hơn hoặc =0
=> (3x+1)2+1 luôn lớn hơn hoặc =1
=> (3x+1)^2+1 luôn dương với mọi giá trị của biến
a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)
Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\) với mọi x
=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)
Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến
b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì: \(\left(3x-1\right)^2\ge0\) với mọi giá trị của x
=> \(\left(3x-1\right)^2+1>0\)
vậy biểu thức trên luôn luôn dương với mọi giá trị của x