Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
a)\(-\frac{1}{4}x^2+x-2=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)
\(=-1-\left(\frac{1}{2}x-1\right)^2\le-1\left(đpcm\right)\)
b)\(-3x^2-6x-9=-3\left(x^2-2x+1+2\right)\)
\(=-6-3\left(x-1\right)^2\le-6\left(đpcm\right)\)
c)\(-2x^2+3x-6=-2\left(x^2-\frac{3}{2}x+3\right)\)
\(=-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=-\frac{39}{8}-2\left(x-\frac{3}{4}\right)^2\le-\frac{39}{8}\)
d) tương tự
A = -x2 + 2xy - 4y2 + 2x + 10y - 8
=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5
= [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5
= ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y
Dấu "=" xảy ra <=> x = 3 ; y = 2
=> -A ≥ -5
=> A ≤ 5
=> MaxA = 5 <=> x = 3 ; y = 2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975
= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975
= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975
= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y
Dấu "=" xảy ra <=> x = 5 ; y = 7/3
=> MinB = 1975 <=> x = 5 ; y = 7/3
Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8
A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]
A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]
A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5
A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x
Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0
=>x = -1 và y = -2
Vậy MaxA = 5 khi x = -1 và y = -2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975
B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975
đoạn cuối tt trên