Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
Vậy \(A_{min}=1\Leftrightarrow x=-1\)
\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)
Vậy \(B_{min}=2\Leftrightarrow x=-2\)
ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi
a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0
b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
a) Đặt \(A=x^2+4x+7\)
\(A=\left(x^2+4x+4\right)+3\)
\(A=\left(x+2\right)^2+3\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow A\ge3>0\)
b) Đặt \(B=4x^2-4x+5\)
\(B=\left(4x^2-4x+1\right)+4\)
\(B=\left(2x-1\right)^2+4\)
Mà \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\)
c) Đặt \(C=x^2+2y^2+2xy-2y+3\)
\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow C\ge2>0\)
\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)
\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)
Bài 2 đề bn viết thiếu đấu + đó
Ta có M=x2+4xy+5y2-2y+3
=(x2+4xy+4y2)+(y2-2y+1)+2
=(x+2y)2 +(y-1)2+2
Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)
=> đpcm
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
a) \(x^2-x+1=x^2-\frac{1}{2}.x.2+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(\forall x\right)\) và \(\frac{3}{4}>0\)
Nên \(x^2-x+1\) luôn dương với mọi giá trị của x
b) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
Nên x2 + x + 2 luôn dương với mọi giá trị của x
c) \(-a^2+a-3=-\left(a^2-a+3\right)=-\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)-\frac{11}{4}\)
\(=-\left(a-\frac{1}{2}\right)^2+\frac{-11}{4}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\left(\forall a\right)\Rightarrow-\left(a-\frac{1}{2}\right)^2< 0\left(\forall a\right)\)
Và \(\frac{-11}{4}< 0\)
Nên -a2 + a - 3 luôn âm với mọi giá trị của a
a) x^2 - x+1
=x^2 - 2.x.1/2 + (1/2)^2-(1/2)^2 +1
=(x-1/2)^2 - 1/4 +1
=(x-1/2)^2 + 3/4
ta thấy ; (x-1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
(=) (x-1/2)^2 + 3/4 >0 với mọi x thuộc R
hay x^2 -x + 1 luôn dương
b) x^2 + x +2
=x^2 + 2.x.1/2 + ( 1/2)^2 -(1/2)^2 +2
= ( x+1/2)^2 -1/4 +2
= (x+1/2)^2 +7/4
ta thấy : (x + 1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
(=) (x + 1/2)^2 + 7/4 > 0 với mọi x thuộc R
hay x^2 + x + 2 luôn dương
c)-a^2 + a -3
= -( a^2 -a +3 )
= - (a^2-2a1/2+<1/2>^2 -<1/2>^2 + 3 )
= - ( <a-1/2>^2 -1/4 +3)
= - ( <a-1/2>^2 +11/4)
= -(a-1/2)^2 -11/4
ta thấy : - (a-1/2)^2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R
(=) -(a-1/2)^2 - 11/4 < 0 với mọi x thuộc R
hay -a^2 + a -3 luôn âm
d) xin lỗi mình chưa giải kịp
A = (x2 + 4x + 4) +3
A = (x + 2)2 + 3
Vì (x + 2)2 \(\ge\) 0
⇒ (x + 2)2 + 3 > 3
Mà 3 > 0
⇒ A > 0 với mọi x ∈ R
B = 4x2 - 3x +1
B = (4x2 - 2x.2.\(\frac{3}{4}\) + \(\frac{9}{16}\)) + \(\frac{7}{16}\)
B = (2x - \(\frac{3}{4}\))2 + \(\frac{7}{16}\)
Tương tụ nha bạn !!!!!!
2x.2.\(\frac{3}{4}\)\(+\frac{9}{16}\) là sao v bạn giải thích với