Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
Áp dụng BĐT cô si cho 3 số không âm ta có:
\(\frac{4a+1+1}{2}\ge\sqrt{4a+1}\Leftrightarrow\frac{4a+2}{2}\ge\sqrt{4a+1}\Leftrightarrow2a+1\ge\sqrt{4a+1}\)
Mà a>0 nên: \(2a+1>\sqrt{4a+1}\)
Tương tự với \(\sqrt{4b+1}\) và \(\sqrt{4c+1}\) ta có:
\(2b+1>\sqrt{4b+1};2c+1>\sqrt{4c+1}\)
=>\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}<2a+1+2b+1+2c+1\)
\(=2.\left(a+b+c\right)+3=2.1+3=5\)
=>điều phải chứng minh
\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)
\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)
\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)
Đến chỗ này phân tích kiểu j được nhỉ
Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)
Dau '=' xay ra khi \(a=b=c\)
Bai nay phai co dieu kien a,b >0 nha ban
Ap dung bdt \(ab\le\frac{\left(a+b\right)^2}{4}< \frac{1}{4}\) dau nho hon la do gia thiet nha ban
Ap dung bdt Cosi cho 2 so ko am
ta co A= \(ab+\frac{1}{16ab}+\frac{15}{16ab}>2\sqrt{ab.\frac{1}{16ab}}+\frac{15}{16.\frac{1}{4}}=2.\frac{1}{4}+\frac{15}{4}=\frac{17}{4}\)
Study well
<=>\(\left(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\right)^2=\left(\sqrt{2\left(\sqrt{2}-1\right)}\right)^2\)
<=>\(\sqrt{2}+1+\sqrt{2}-1-2\left(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)=2\left(\sqrt{2}-1\right)\)
<=>\(2\sqrt{2}-2=2\sqrt{2}-2\left(dpcm\right)\)
¬¬¬¬¬¬hoc tot ¬¬¬¬¬¬¬
Với a,b,c,d >0. Áp dụng bất đẳng thức Cô-si ta có :
\(a+b\ge2\sqrt{ab}\)
\(c+d\ge2\sqrt{cd}\)
Do đó : \(a+b+c+d\ge2\sqrt{ab}+2\sqrt{cd}\) \(=2\left(\sqrt{ab}+\sqrt{cd}\right)\) (1)
Áp dụng bất đẳng thức Cô-si ta có :
\(\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\) (2)
Từ (1) và (2) ta có : \(a+b+c+d\ge4\sqrt[4]{abcd}\)
\(\Rightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
\(\left(\frac{a+b+c+d}{4}\right)^4\ge abcd\)
Đẳng thức xảy ra khi \(a=b=c=d\)
câu trên không có điều kiện các bạn nhé ! chỉ có thế thôi!