Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1+2^2+2^4+...+2^{100}$
$=(1+2^2+2^4)+(2^6+2^8+2^{10})+....+(2^{96}+2^{98}+2^{100})$
$=(1+2^2+2^4)+2^6(1+2^2+2^4)+....+2^{96}(1+2^2+2^4)$
$=(1+2^2+2^4)(1+2^6+...+2^{96})$
$=21(1+2^6+...+2^{96})\vdots 21$
a) 38-3n : n =-3+38/n vậy n là Ư(38) nên n = 1 ; 2 ; 19 ; 38
b) ( n+5 ) : ( n + 1 ) hay ( n +1 + 4 ) : (n+1) vậy n+1 là Ư(4) nên n+1 = 1 ; 2 ; 4. Vậy n = 0;1;3
c) ( 3n + 4 ) :( n + 1 ) hay ( 3n + 1 + 3 ) : ( n + 1 ) vậy n + 1 là Ư(3) nên n + 1 = 1;3. Vậy n = 0;2
d) ( 2n + 1 ) : ( 16 - 3n ) hay 3(2n+1) : ( 16 - 3n ) hay 3(2n + 1 ) : 2(16 - 3n ) hay ( 6n + 3 ) : ( 32 - 6n ). Vậy ( 6n + 3 + 32 - 6n ) chia hết cho 16 - 3n hay 35 chia hết cho ( 16 - 3n ). 16 - 3n là Ư ( 35 ). Vậy 16 -3n = 1;5;7;35. n = 5;3 là thích hợp.
n+4 chia hết cho n+1
<=> n+1+3 chia hết cho n+1
<=> n+1 chia hết cho n+1
3 chia hết cho n+1
=> n+1 thuộc Ư(3)={-1;-3;1;3}
ta có bảng
vậy n thuộc {-4;-2;0;2}
còn phần b tớ chưa làm đc
a) ta có: 4n + 5 chia hết cho n
mà 4n chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5)={1;5} ( n là STN)
b) ta có: n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
mà n + 1 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
bn tự xét nha
c) ta có: 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n -1
3.(n-1) + 7 chia hết cho n -1
...
2n +1 ⋮ n-2
n+n+1⋮n-2
n+n-2-2+5⋮n+2
2(n-2)+5 ⋮ n-2
⇒ 5 ⋮ n- 2
hay n-2 ∈ Ư(5)={1;5;-1;-5}
⇒ n ∈ { 3,7,1,-3 }
Vậy n = 3,7,1,-3
n+6 ⋮ n-5
Vì n-5 ⋮ n-5
=> n+6 - (n-5) ⋮ n-5
=> n+6 - n+5 ⋮ n-5
=> 11 ⋮ n-5
=> n-5 \(\in\)Ư(11)
=> n-5 \(\in\){1;-1;11;-11}
=> n \(\in\){6;4;16;-6}
Vậy...
3n+22 ⋮ n-5
Vì 3(n-5) ⋮ n-5
=> 3n+22 - 3(n-5) ⋮ n-5
=> 3n+22 - 3n+15 ⋮ n-5
=> 37 ⋮ n-5
=> n-5 \(\in\)Ư(37)
=> n-5 \(\in\){1;-1;37;-37}
=> n \(\in\){6;4;42;-32}
Vậy...
2(n+1) ⋮ n-2
Vì 2(n-2) ⋮ n-2
=> 2(n+1) - 2(n-2) ⋮ n-2
=> 2n+2 - 2n+4 ⋮ n-2
=> 6 ⋮ n-2
=> n-2 \(\in\)Ư(6)
=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}
=> n \(\in\){3;1;4;0;5;-1;8;-4}
Vậy...
a. ( 7+n ) chia hết 5
Ta có n phải là số tự nhiên có taajn cùng là 0 vậy khi đó để làm ta lập bảng
(7+n) :5 | ||
7 | 3 | 10 |
7 | 8 | 15 |
Từ số 10, 15 \(⋮5\)
Tức là n= {3,8}
Vậy n={3,8}
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Rightarrow A=6+2^3\left(2+2^2\right)+...+2^{99}\left(2+2^2\right)\)
\(\Rightarrow A=6+2^3.6+...+2^{99}.6\)
\(\Rightarrow A=6\left(1+2^3+...+2^{99}\right)⋮6\)