Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(A=x^2+4xy+5y^2+10x-22y+28\)
\(=(x^2+4xy+4y^2)+y^2+10x-22y+28\)
\(=(x+2y)^2+2.5(x+2y)+5^2+y^2-42y+3\)
\(=(x+2y+5)^2+y^2-42y+3\)
\(=(x+2y+5)^2+(y^2-42y+21^2)-438\)
\(=(x+2y+5)^2+(y-21)^2-438\)
\(\geq 0+0-438=-438\)
Vậy \(A_{\min}=-438\Leftrightarrow \left\{\begin{matrix} x+2y+5=0\\ y-21=0\end{matrix}\right.\Leftrightarrow x=-47; y=21\)
E=(4x^2-4x+1)+(9y^2+6y+1)+(16z^2+8z+1)+1
E=(2x-1)^2+(3y-1)^2+(4z+1)^2+1
Vì (2x-1)^2>=0
........>=0
.........>=0
nên E>= 1.dấu = xảy ra khi x=1/2
y=1/3
z=1/4
A = ( x2 - 4x + 4 ) + ( y2 + 2y + 1 ) + 7
= ( x - 2 )2 + ( y + 1 )2 + 7 luôn dương nhé ( vì hai bình phương cộng thêm 7 lớn hơn 0 )
\(A=x^2-4x+y^2+2y+12=x^2-4x+4+y^2+2y+1+7\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+7\ge7\)với mọi x,y
Do đó A luôn dương với mọi x,y
a)
2x2+2x+1
=(x+1)2+x2
(x+1)2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1
x2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1
vậy biểu thức này có giá trị dương ( >0 ) với mọi giá trị của biến
b)9x2-6x+2
=(3x+1)2 +1
ta có: (3x+1)2 luôn lớ hơn hoặc =0
=> (3x+1)2+1 luôn lớn hơn hoặc =1
=> (3x+1)^2+1 luôn dương với mọi giá trị của biến
a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)
Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\) với mọi x
=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)
Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến
b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì: \(\left(3x-1\right)^2\ge0\) với mọi giá trị của x
=> \(\left(3x-1\right)^2+1>0\)
vậy biểu thức trên luôn luôn dương với mọi giá trị của x
\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(A=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)+\left(y^2-22y+121\right)+2\\ A=\left(x-2y\right)^2+\left(x+5\right)^2+\left(y-11\right)^2+2\ge2>0\)